IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v277y2019i3p799-813.html
   My bibliography  Save this article

A survey of adjustable robust optimization

Author

Listed:
  • Yanıkoğlu, İhsan
  • Gorissen, Bram L.
  • den Hertog, Dick

Abstract

Static robust optimization (RO) is a methodology to solve mathematical optimization problems with uncertain data. The objective of static RO is to find solutions that are immune to all perturbations of the data in a so-called uncertainty set. RO is popular because it is a computationally tractable methodology and has a wide range of applications in practice. Adjustable robust optimization (ARO), on the other hand, is a branch of RO where some of the decision variables can be adjusted after some portion of the uncertain data reveals itself. ARO generally yields a better objective function value than that in static robust optimization because it gives rise to more flexible adjustable (or wait-and-see) decisions. Additionally, ARO also has many real life applications and is a computationally tractable methodology for many parameterized adjustable decision variables and uncertainty sets. This paper surveys the state-of-the-art literature on applications and theoretical/methodological aspects of ARO. Moreover, it provides a tutorial and a road map to guide researchers and practitioners on how to apply ARO methods, as well as, the advantages and limitations of the associated methods.

Suggested Citation

  • Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
  • Handle: RePEc:eee:ejores:v:277:y:2019:i:3:p:799-813
    DOI: 10.1016/j.ejor.2018.08.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718307264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.08.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michal Melamed & Aharon Ben-Tal & Boaz Golany, 2016. "On the average performance of the adjustable RO and its use as an offline tool for multi-period production planning under uncertainty," Computational Management Science, Springer, vol. 13(2), pages 293-315, April.
    2. Postek, K.S. & den Hertog, D., 2016. "Multi-stage Adjustable Robust Mixed-Integer Optimization via Iterative Splitting of the Uncertainty set (Revision of CentER Discussion Paper 2014-056)," Other publications TiSEM 08442e3a-d1eb-42b3-8f13-8, Tilburg University, School of Economics and Management.
    3. Yan, Shangyao & Tang, Ching-Hui, 2009. "Inter-city bus scheduling under variable market share and uncertain market demands," Omega, Elsevier, vol. 37(1), pages 178-192, February.
    4. NESTEROV, Yu., 2000. "Squared functional systems and optimization problems," LIDAM Reprints CORE 1472, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. F. Babonneau & J.-P. Vial & R. Apparigliato, 2009. "Robust Optimization for Environmental and Energy Planning," International Series in Operations Research & Management Science, in: Jerzy A. Filar & Alain Haurie (ed.), Uncertainty and Environmental Decision Making, chapter 0, pages 79-126, Springer.
    6. Karl Frauendorfer, 1988. "Solving SLP Recourse Problems with Arbitrary Multivariate Distributions---The Dependent Case," Mathematics of Operations Research, INFORMS, vol. 13(3), pages 377-394, August.
    7. Zhang, Bo & Yao, Tao & Friesz, Terry L. & Sun, Yuqi, 2015. "A tractable two-stage robust winner determination model for truckload service procurement via combinatorial auctions," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 16-31.
    8. Patrick Jaillet & Jin Qi & Melvyn Sim, 2016. "Routing Optimization Under Uncertainty," Operations Research, INFORMS, vol. 64(1), pages 186-200, February.
    9. Ben-Tal, Aharon & Chung, Byung Do & Mandala, Supreet Reddy & Yao, Tao, 2011. "Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1177-1189, September.
    10. Frans J. C. T. Ruiter & Aharon Ben-Tal & Ruud C. M. Brekelmans & Dick Hertog, 2017. "Robust optimization of uncertain multistage inventory systems with inexact data in decision rules," Computational Management Science, Springer, vol. 14(1), pages 45-66, January.
    11. A. Takeda & S. Taguchi & R. H. Tütüncü, 2008. "Adjustable Robust Optimization Models for a Nonlinear Two-Period System," Journal of Optimization Theory and Applications, Springer, vol. 136(2), pages 275-295, February.
    12. Krzysztof Postek & Dick den Hertog, 2016. "Multistage Adjustable Robust Mixed-Integer Optimization via Iterative Splitting of the Uncertainty Set," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 553-574, August.
    13. S. E. Wright, 1994. "Primal-Dual Aggregation and Disaggregation for Stochastic Linear Programs," Mathematics of Operations Research, INFORMS, vol. 19(4), pages 893-908, November.
    14. Joel Goh & Nicholas G. Hall, 2013. "Total Cost Control in Project Management via Satisficing," Management Science, INFORMS, vol. 59(6), pages 1354-1372, June.
    15. Postek, Krzysztof & den Hertog, Dick & Kind, J. & Pustjens, Chris, 2016. "Adjustable Robust Strategies for Flood Protection," Other publications TiSEM 6e85c2ff-32dd-4c7e-8d95-a, Tilburg University, School of Economics and Management.
    16. Dimitris Bertsimas & Frans J. C. T. de Ruiter, 2016. "Duality in Two-Stage Adaptive Linear Optimization: Faster Computation and Stronger Bounds," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 500-511, August.
    17. Ben-Tal, A. & den Hertog, D. & Laurent, M., 2011. "Hidden Convexity in Partially Separable Optimization," Other publications TiSEM 56b82c13-ee8f-4072-be97-f, Tilburg University, School of Economics and Management.
    18. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    19. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    20. Xin Chen & Melvyn Sim & Peng Sun & Jiawei Zhang, 2008. "A Linear Decision-Based Approximation Approach to Stochastic Programming," Operations Research, INFORMS, vol. 56(2), pages 344-357, April.
    21. Goerigk, Marc & Deghdak, Kaouthar & T’Kindt, Vincent, 2015. "A two-stage robustness approach to evacuation planning with buses," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 66-82.
    22. Seçil Sözüer & Aurélie C. Thiele, 2016. "The State of Robust Optimization," International Series in Operations Research & Management Science, in: Michael Doumpos & Constantin Zopounidis & Evangelos Grigoroudis (ed.), Robustness Analysis in Decision Aiding, Optimization, and Analytics, chapter 0, pages 89-112, Springer.
    23. Chuen-Teck See & Melvyn Sim, 2010. "Robust Approximation to Multiperiod Inventory Management," Operations Research, INFORMS, vol. 58(3), pages 583-594, June.
    24. Dimitris Bertsimas & Iain Dunning, 2016. "Multistage Robust Mixed-Integer Optimization with Adaptive Partitions," Operations Research, INFORMS, vol. 64(4), pages 980-998, August.
    25. Ben-Tal, A. & den Hertog, D. & Laurent, M., 2011. "Hidden Convexity in Partially Separable Optimization," Discussion Paper 2011-070, Tilburg University, Center for Economic Research.
    26. Charles C. Holt & Franco Modigliani & Herbert A. Simon, 1955. "A Linear Decision Rule for Production and Employment Scheduling," Management Science, INFORMS, vol. 2(1), pages 1-30, October.
    27. Dan A. Iancu & Nikolaos Trichakis, 2014. "Pareto Efficiency in Robust Optimization," Management Science, INFORMS, vol. 60(1), pages 130-147, January.
    28. Odellia Boni & Aharon Ben-Tal, 2008. "Adjustable robust counterpart of conic quadratic problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(2), pages 211-233, October.
    29. Dimitris Bertsimas & Dan A. Iancu & Pablo A. Parrilo, 2010. "Optimality of Affine Policies in Multistage Robust Optimization," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 363-394, May.
    30. Faiz A. Al-Khayyal & James E. Falk, 1983. "Jointly Constrained Biconvex Programming," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 273-286, May.
    31. Dimitris Bertsimas & Angelos Georghiou, 2015. "Design of Near Optimal Decision Rules in Multistage Adaptive Mixed-Integer Optimization," Operations Research, INFORMS, vol. 63(3), pages 610-627, June.
    32. Aharon Ben-Tal & Boaz Golany & Arkadi Nemirovski & Jean-Philippe Vial, 2005. "Retailer-Supplier Flexible Commitments Contracts: A Robust Optimization Approach," Manufacturing & Service Operations Management, INFORMS, vol. 7(3), pages 248-271, February.
    33. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    34. Josette Ayoub & Michael Poss, 2016. "Decomposition for adjustable robust linear optimization subject to uncertainty polytope," Computational Management Science, Springer, vol. 13(2), pages 219-239, April.
    35. An, Yu & Zeng, Bo & Zhang, Yu & Zhao, Long, 2014. "Reliable p-median facility location problem: two-stage robust models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 54-72.
    36. Marcus Ang & Yun Fong Lim & Melvyn Sim, 2012. "Robust Storage Assignment in Unit-Load Warehouses," Management Science, INFORMS, vol. 58(11), pages 2114-2130, November.
    37. Mattia, Sara & Rossi, Fabrizio & Servilio, Mara & Smriglio, Stefano, 2017. "Staffing and scheduling flexible call centers by two-stage robust optimization," Omega, Elsevier, vol. 72(C), pages 25-37.
    38. Grani A. Hanasusanto & Daniel Kuhn & Wolfram Wiesemann, 2015. "K -Adaptability in Two-Stage Robust Binary Programming," Operations Research, INFORMS, vol. 63(4), pages 877-891, August.
    39. Jiang, Ruiwei & Zhang, Muhong & Li, Guang & Guan, Yongpei, 2014. "Two-stage network constrained robust unit commitment problem," European Journal of Operational Research, Elsevier, vol. 234(3), pages 751-762.
    40. Dan A. Iancu & Mayank Sharma & Maxim Sviridenko, 2013. "Supermodularity and Affine Policies in Dynamic Robust Optimization," Operations Research, INFORMS, vol. 61(4), pages 941-956, August.
    41. Hua Sun & Ziyou Gao & Fangxia Zhao, 2014. "Dynamic Network Design Problem under Demand Uncertainty: An Adjustable Robust Optimization Approach," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-16, February.
    42. Qing-chun Meng & Xiao-le Wan & Xiao-xia Rong, 2015. "A Robust Ordering Strategy for Retailers Facing a Free Shipping Option," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-14, May.
    43. van den Akker, J.M. & Bouman, P.C. & Hoogeveen, J.A. & Tönissen, D.D., 2016. "Decomposition approaches for recoverable robust optimization problems," European Journal of Operational Research, Elsevier, vol. 251(3), pages 739-750.
    44. Jiafu Tang & Yu Wang, 2015. "An adjustable robust optimisation method for elective and emergency surgery capacity allocation with demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7317-7328, December.
    45. Joel Goh & Melvyn Sim, 2011. "Robust Optimization Made Easy with ROME," Operations Research, INFORMS, vol. 59(4), pages 973-985, August.
    46. de Ruiter, Frans & Brekelmans, Ruud & den Hertog, Dick, 2016. "The impact of the existence of multiple adjustable robust solutions," Other publications TiSEM eabf3802-3965-40ef-b26d-f, Tilburg University, School of Economics and Management.
    47. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    48. Dimitris Bertsimas & Vineet Goyal, 2013. "On the approximability of adjustable robust convex optimization under uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 323-343, June.
    49. Lim, Sungmook, 2013. "A joint optimal pricing and order quantity model under parameter uncertainty and its practical implementation," Omega, Elsevier, vol. 41(6), pages 998-1007.
    50. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    51. Bram L. Gorissen & Hans Blanc & Dick den Hertog & Aharon Ben-Tal, 2014. "Technical Note---Deriving Robust and Globalized Robust Solutions of Uncertain Linear Programs with General Convex Uncertainty Sets," Operations Research, INFORMS, vol. 62(3), pages 672-679, June.
    52. Fliedner, Thomas & Liesiö, Juuso, 2016. "Adjustable robustness for multi-attribute project portfolio selection," European Journal of Operational Research, Elsevier, vol. 252(3), pages 931-946.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2020. "A Primal–Dual Lifting Scheme for Two-Stage Robust Optimization," Operations Research, INFORMS, vol. 68(2), pages 572-590, March.
    2. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    3. Nicolas Kämmerling & Jannis Kurtz, 2020. "Oracle-based algorithms for binary two-stage robust optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 539-569, November.
    4. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    5. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    6. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    7. Angelos Georghiou & Daniel Kuhn & Wolfram Wiesemann, 2019. "The decision rule approach to optimization under uncertainty: methodology and applications," Computational Management Science, Springer, vol. 16(4), pages 545-576, October.
    8. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2019. "Robust Dual Dynamic Programming," Operations Research, INFORMS, vol. 67(3), pages 813-830, May.
    9. Jianzhe Zhen & Ahmadreza Marandi & Danique de Moor & Dick den Hertog & Lieven Vandenberghe, 2022. "Disjoint Bilinear Optimization: A Two-Stage Robust Optimization Perspective," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2410-2427, September.
    10. Metzker Soares, Paula & Thevenin, Simon & Adulyasak, Yossiri & Dolgui, Alexandre, 2024. "Adaptive robust optimization for lot-sizing under yield uncertainty," European Journal of Operational Research, Elsevier, vol. 313(2), pages 513-526.
    11. Rahal, Said & Papageorgiou, Dimitri J. & Li, Zukui, 2021. "Hybrid strategies using linear and piecewise-linear decision rules for multistage adaptive linear optimization," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1014-1030.
    12. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    13. Viktoryia Buhayenko & Dick den Hertog, 2017. "Adjustable Robust Optimisation approach to optimise discounts for multi-period supply chain coordination under demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6801-6823, November.
    14. Omar El Housni & Vineet Goyal, 2021. "On the Optimality of Affine Policies for Budgeted Uncertainty Sets," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 674-711, May.
    15. Marcio Costa Santos & Michael Poss & Dritan Nace, 2018. "A perfect information lower bound for robust lot-sizing problems," Annals of Operations Research, Springer, vol. 271(2), pages 887-913, December.
    16. Ayşe N. Arslan & Boris Detienne, 2022. "Decomposition-Based Approaches for a Class of Two-Stage Robust Binary Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 857-871, March.
    17. Anirudh Subramanyam & Frank Mufalli & José M. Lí?nez-Aguirre & Jose M. Pinto & Chrysanthos E. Gounaris, 2021. "Robust Multiperiod Vehicle Routing Under Customer Order Uncertainty," Operations Research, INFORMS, vol. 69(1), pages 30-60, January.
    18. Farough Motamed Nasab & Zukui Li, 2023. "Multistage Adaptive Robust Binary Optimization: Uncertainty Set Lifting versus Partitioning through Breakpoints Optimization," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
    19. Dimitris Bertsimas & Frans J. C. T. de Ruiter, 2016. "Duality in Two-Stage Adaptive Linear Optimization: Faster Computation and Stronger Bounds," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 500-511, August.
    20. Curcio, Eduardo & Amorim, Pedro & Zhang, Qi & Almada-Lobo, Bernardo, 2018. "Adaptation and approximate strategies for solving the lot-sizing and scheduling problem under multistage demand uncertainty," International Journal of Production Economics, Elsevier, vol. 202(C), pages 81-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:277:y:2019:i:3:p:799-813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.