IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v64y2016i1p186-200.html
   My bibliography  Save this article

Routing Optimization Under Uncertainty

Author

Listed:
  • Patrick Jaillet

    () (Department of Electrical Engineering and Computer Science, Laboratory for Information and Decision Systems, Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Jin Qi

    () (Department of Industrial Engineering and Logistics Management, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong)

  • Melvyn Sim

    () (Department of Decision Sciences, NUS Business School, National University of Singapore, Singapore 119077)

Abstract

We consider a class of routing optimization problems under uncertainty in which all decisions are made before the uncertainty is realized. The objective is to obtain optimal routing solutions that would, as much as possible, adhere to a set of specified requirements after the uncertainty is realized. These problems include finding an optimal routing solution to meet the soft time window requirements at a subset of nodes when the travel time is uncertain, and sending multiple capacitated vehicles to different nodes to meet the customers’ uncertain demands. We introduce a precise mathematical framework for defining and solving such routing problems. In particular, we propose a new decision criterion, called the Requirements Violation (RV) Index , which quantifies the risk associated with the violation of requirements taking into account both the frequency of violations and their magnitudes whenever they occur. The criterion can handle instances when probability distributions are known, and ambiguity when distributions are partially characterized through descriptive statistics such as moments. We develop practically efficient algorithms involving Benders decomposition to find the exact optimal routing solution in which the RV Index criterion is minimized, and we give numerical results from several computational studies that show the attractive performance of the solutions.

Suggested Citation

  • Patrick Jaillet & Jin Qi & Melvyn Sim, 2016. "Routing Optimization Under Uncertainty," Operations Research, INFORMS, vol. 64(1), pages 186-200, February.
  • Handle: RePEc:inm:oropre:v:64:y:2016:i:1:p:186-200
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2015.1462
    Download Restriction: no

    References listed on IDEAS

    as
    1. Häme, Lauri & Hakula, Harri, 2013. "Dynamic journeying under uncertainty," European Journal of Operational Research, Elsevier, vol. 225(3), pages 455-471.
    2. David B. Brown & Enrico De Giorgi & Melvyn Sim, 2012. "Aspirational Preferences and Their Representation by Risk Measures," Management Science, INFORMS, vol. 58(11), pages 2095-2113, November.
    3. Robert J. Aumann & Roberto Serrano, 2008. "An Economic Index of Riskiness," Journal of Political Economy, University of Chicago Press, vol. 116(5), pages 810-836, October.
    4. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    5. repec:pal:jorsoc:v:59:y:2008:i:9:d:10.1057_palgrave.jors.2602465 is not listed on IDEAS
    6. Chrysanthos E. Gounaris & Wolfram Wiesemann & Christodoulos A. Floudas, 2013. "The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty," Operations Research, INFORMS, vol. 61(3), pages 677-693, June.
    7. Patrick Jaillet, 1988. "A Priori Solution of a Traveling Salesman Problem in Which a Random Subset of the Customers Are Visited," Operations Research, INFORMS, vol. 36(6), pages 929-936, December.
    8. C Lee & K Lee & S Park, 2012. "Robust vehicle routing problem with deadlines and travel time/demand uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(9), pages 1294-1306, September.
    9. R. Montemanni & J. Barta & M. Mastrolilli & L. M. Gambardella, 2007. "The Robust Traveling Salesman Problem with Interval Data," Transportation Science, INFORMS, vol. 41(3), pages 366-381, August.
    10. repec:pal:jorsoc:v:61:y:2010:i:1:d:10.1057_jors.2009.76 is not listed on IDEAS
    11. Dimitris J. Bertsimas & David Simchi-Levi, 1996. "A New Generation of Vehicle Routing Research: Robust Algorithms, Addressing Uncertainty," Operations Research, INFORMS, vol. 44(2), pages 286-304, April.
    12. Ann M. Campbell & Barrett W. Thomas, 2008. "Probabilistic Traveling Salesman Problem with Deadlines," Transportation Science, INFORMS, vol. 42(1), pages 1-21, February.
    13. Dimitris J. Bertsimas, 1992. "A Vehicle Routing Problem with Stochastic Demand," Operations Research, INFORMS, vol. 40(3), pages 574-585, June.
    14. Shao-Wei Lam & Tsan Sheng Ng & Melvyn Sim & Jin-Hwa Song, 2013. "Multiple Objectives Satisficing Under Uncertainty," Operations Research, INFORMS, vol. 61(1), pages 214-227, February.
    15. David B. Brown & Melvyn Sim, 2009. "Satisficing Measures for Analysis of Risky Positions," Management Science, INFORMS, vol. 55(1), pages 71-84, January.
    16. Li, Xiangyong & Tian, Peng & Leung, Stephen C.H., 2010. "Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm," International Journal of Production Economics, Elsevier, vol. 125(1), pages 137-145, May.
    17. Taş, D. & Gendreau, M. & Dellaert, N. & van Woensel, T. & de Kok, A.G., 2014. "Vehicle routing with soft time windows and stochastic travel times: A column generation and branch-and-price solution approach," European Journal of Operational Research, Elsevier, vol. 236(3), pages 789-799.
    18. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    19. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    20. Nicholas G. Hall & Daniel Zhuoyu Long & Jin Qi & Melvyn Sim, 2015. "Managing Underperformance Risk in Project Portfolio Selection," Operations Research, INFORMS, vol. 63(3), pages 660-675, June.
    21. Chang, Tsung-Sheng & Wan, Yat-wah & OOI, Wei Tsang, 2009. "A stochastic dynamic traveling salesman problem with hard time windows," European Journal of Operational Research, Elsevier, vol. 198(3), pages 748-759, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:ejores:v:267:y:2018:i:1:p:288-303 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:64:y:2016:i:1:p:186-200. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc) The email address of this maintainer does not seem to be valid anymore. Please ask Mirko Janc to update the entry or send us the correct email address. General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.