IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v61y2010i1d10.1057_jors.2009.76.html
   My bibliography  Save this article

A concise guide to the Traveling Salesman Problem

Author

Listed:
  • G Laporte

    (Canada Research Chair in Distribution Management)

Abstract

The Traveling Salesman Problem (TSP) is one of the most famous problems in combinatorial optimization. Hundreds of papers have been written on the TSP and several exact and heuristic algorithms are available for it. Their concise guide outlines the most important and best algorithms for the symmetric and asymmetric versions of the TSP. In several cases, references to publicly available software are provided.

Suggested Citation

  • G Laporte, 2010. "A concise guide to the Traveling Salesman Problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 35-40, January.
  • Handle: RePEc:pal:jorsoc:v:61:y:2010:i:1:d:10.1057_jors.2009.76
    DOI: 10.1057/jors.2009.76
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2009.76
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2009.76?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    2. M. Grötschel & W. R. Pulleyblank, 1986. "Clique Tree Inequalities and the Symmetric Travelling Salesman Problem," Mathematics of Operations Research, INFORMS, vol. 11(4), pages 537-569, November.
    3. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    4. Daganzo, Carlos F., 1984. "The length of tours in zones of different shapes," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 135-145, April.
    5. G Babin & S Deneault & G Laporte, 2007. "Improvements to the Or-opt heuristic for the symmetric travelling salesman problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 402-407, March.
    6. Giorgio Carpaneto & Paolo Toth, 1980. "Some New Branching and Bounding Criteria for the Asymmetric Travelling Salesman Problem," Management Science, INFORMS, vol. 26(7), pages 736-743, July.
    7. Merrill M. Flood, 1956. "The Traveling-Salesman Problem," Operations Research, INFORMS, vol. 4(1), pages 61-75, February.
    8. Laporte, Gilbert, 1992. "The traveling salesman problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(2), pages 231-247, June.
    9. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    10. John D. C. Little & Katta G. Murty & Dura W. Sweeney & Caroline Karel, 1963. "An Algorithm for the Traveling Salesman Problem," Operations Research, INFORMS, vol. 11(6), pages 972-989, December.
    11. Helsgaun, Keld, 2000. "An effective implementation of the Lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, Elsevier, vol. 126(1), pages 106-130, October.
    12. Harlan Crowder & Manfred W. Padberg, 1980. "Solving Large-Scale Symmetric Travelling Salesman Problems to Optimality," Management Science, INFORMS, vol. 26(5), pages 495-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahimi, Mahour & Amirgholy, Mahyar & Gonzales, Eric J., 2018. "System modeling of demand responsive transportation services: Evaluating cost efficiency of service and coordinated taxi usage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 66-83.
    2. Güner, Ali R. & Murat, Alper & Chinnam, Ratna Babu, 2017. "Dynamic routing for milk-run tours with time windows in stochastic time-dependent networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 251-267.
    3. Marie-Sklaerder Vié & Nicolas Zufferey & Roel Leus, 2022. "Aircraft landing planning under uncertain conditions," Journal of Scheduling, Springer, vol. 25(2), pages 203-228, April.
    4. Könnyű, Nóra & Tóth, Sándor F., 2013. "A cutting plane method for solving harvest scheduling models with area restrictions," European Journal of Operational Research, Elsevier, vol. 228(1), pages 236-248.
    5. Patrick Jaillet & Jin Qi & Melvyn Sim, 2016. "Routing Optimization Under Uncertainty," Operations Research, INFORMS, vol. 64(1), pages 186-200, February.
    6. Chen, Yu-Wang & Zhu, Yao-Jia & Yang, Gen-Ke & Lu, Yong-Zai, 2011. "Improved extremal optimization for the asymmetric traveling salesman problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4459-4465.
    7. Calvete, Herminia I. & Galé, Carmen & Iranzo, José A., 2013. "An efficient evolutionary algorithm for the ring star problem," European Journal of Operational Research, Elsevier, vol. 231(1), pages 22-33.
    8. Calvete, Herminia I. & Galé, Carmen & Iranzo, José A., 2016. "MEALS: A multiobjective evolutionary algorithm with local search for solving the bi-objective ring star problem," European Journal of Operational Research, Elsevier, vol. 250(2), pages 377-388.
    9. Zhouchun Huang & Qipeng P. Zheng & Eduardo L. Pasiliao & Daniel Simmons, 2017. "Exact algorithms on reliable routing problems under uncertain topology using aggregation techniques for exponentially many scenarios," Annals of Operations Research, Springer, vol. 249(1), pages 141-162, February.
    10. Berkoune, Djamel & Renaud, Jacques & Rekik, Monia & Ruiz, Angel, 2012. "Transportation in disaster response operations," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 23-32.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamal Ouenniche & Prasanna K. Ramaswamy & Michel Gendreau, 2017. "A dual local search framework for combinatorial optimization problems with TSP application," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1377-1398, November.
    2. A. S. Santos & A. M. Madureira & M. L. R. Varela, 2018. "The Influence of Problem Specific Neighborhood Structures in Metaheuristics Performance," Journal of Mathematics, Hindawi, vol. 2018, pages 1-14, July.
    3. G Babin & S Deneault & G Laporte, 2007. "Improvements to the Or-opt heuristic for the symmetric travelling salesman problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 402-407, March.
    4. Burger, M. & Su, Z. & De Schutter, B., 2018. "A node current-based 2-index formulation for the fixed-destination multi-depot travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 265(2), pages 463-477.
    5. N. A. Arellano-Arriaga & J. Molina & S. E. Schaeffer & A. M. Álvarez-Socarrás & I. A. Martínez-Salazar, 2019. "A bi-objective study of the minimum latency problem," Journal of Heuristics, Springer, vol. 25(3), pages 431-454, June.
    6. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    7. Sandra Zajac, 2018. "On a two-phase solution approach for the bi-objective k-dissimilar vehicle routing problem," Journal of Heuristics, Springer, vol. 24(3), pages 515-550, June.
    8. Gary R. Waissi & Pragya Kaushal, 2020. "A polynomial matrix processing heuristic algorithm for finding high quality feasible solutions for the TSP," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 73-87, March.
    9. Zhouchun Huang & Qipeng Phil Zheng & Eduardo Pasiliao & Vladimir Boginski & Tao Zhang, 2019. "A cutting plane method for risk-constrained traveling salesman problem with random arc costs," Journal of Global Optimization, Springer, vol. 74(4), pages 839-859, August.
    10. Sleegers, Joeri & Olij, Richard & van Horn, Gijs & van den Berg, Daan, 2020. "Where the really hard problems aren’t," Operations Research Perspectives, Elsevier, vol. 7(C).
    11. repec:jss:jstsof:23:i02 is not listed on IDEAS
    12. Voudouris, Christos & Tsang, Edward, 1999. "Guided local search and its application to the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 113(2), pages 469-499, March.
    13. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    14. Muren, & Wu, Jianjun & Zhou, Li & Du, Zhiping & Lv, Ying, 2019. "Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 87-102.
    15. Nikolakopoulos, Athanassios & Sarimveis, Haralambos, 2007. "A threshold accepting heuristic with intense local search for the solution of special instances of the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1911-1929, March.
    16. Aardal, K.I. & van Hoesel, S., 1995. "Polyhedral Techniques in Combinatorial Optimization," Other publications TiSEM ed028a07-eb6a-4c8d-8f21-d, Tilburg University, School of Economics and Management.
    17. Lucas García & Pedro M. Talaván & Javier Yáñez, 2022. "The 2-opt behavior of the Hopfield Network applied to the TSP," Operational Research, Springer, vol. 22(2), pages 1127-1155, April.
    18. Tsubakitani, Shigeru & Evans, James R., 1998. "An empirical study of a new metaheuristic for the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 104(1), pages 113-128, January.
    19. Bruce Golden & Zahra Naji-Azimi & S. Raghavan & Majid Salari & Paolo Toth, 2012. "The Generalized Covering Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 534-553, November.
    20. Sakakibara, Katsuaki, 1998. "New edges not used in shortest tours of TSP," European Journal of Operational Research, Elsevier, vol. 104(1), pages 129-138, January.
    21. Jean Bertrand Gauthier & Stefan Irnich, 2020. "Inter-Depot Moves and Dynamic-Radius Search for Multi-Depot Vehicle Routing Problems," Working Papers 2004, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:61:y:2010:i:1:d:10.1057_jors.2009.76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.