IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v47y2025i1d10.1007_s00291-024-00780-0.html
   My bibliography  Save this article

Picker routing in scattered storage warehouses: an evaluation of solution methods based on TSP transformations

Author

Listed:
  • Constantin Wildt

    (Technische Universität Darmstadt)

  • Felix Weidinger

    (Technische Universität Darmstadt)

  • Nils Boysen

    (Friedrich-Schiller-Universität Jena)

Abstract

To optimize their order fulfillment processes, many e-commerce warehouses employ a storage assignment strategy known as scattered or mixed-shelves storage. Under this approach, unit loads of homogeneous products are divided, and individual pieces are stored in various shelves throughout the warehouse. This arrangement ensures that products that appear together on unpredictable pick lists are stored in close proximity somewhere in the huge warehouses, reducing the travel distance for pickers. Despite these advancements, efficiently guiding pickers through the warehouse remains a significant planning challenge. Since the same products can be found in multiple storage positions, the traditional picker routing problem becomes more complex, as an additional selection task arises regarding which shelf to retrieve each requested product from. While previous research has developed several tailor-made solution algorithms, we demonstrate that known transformation schemes used for different variants of the well-known Traveling Salesman Problem (TSP) can be utilized to convert the single picker routing problem with scattered storage (SPRP-SS) into a classical TSP. This approach enables us to leverage the extensive array of state-of-the-art TSP solvers. The purpose of this paper is to explore the performance of these solvers when applied to solving the SPRP-SS. Through our computational study, we found that existing TSP solvers exhibit good performance, allowing near-optimal solutions to be obtained in less than a second for real-world scale SPRP-SS instances. Moreover, the efficiency of these TSP solvers remains unaffected by the number of cross aisles in the warehouse. Consequently, we exploit this flexibility to investigate the impact of cross aisles on picking performance in scattered storage warehouses.

Suggested Citation

  • Constantin Wildt & Felix Weidinger & Nils Boysen, 2025. "Picker routing in scattered storage warehouses: an evaluation of solution methods based on TSP transformations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 47(1), pages 35-66, March.
  • Handle: RePEc:spr:orspec:v:47:y:2025:i:1:d:10.1007_s00291-024-00780-0
    DOI: 10.1007/s00291-024-00780-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-024-00780-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-024-00780-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Melh Çelk & Haldun Süral, 2014. "Order picking under random and turnover-based storage policies in fishbone aisle warehouses," IISE Transactions, Taylor & Francis Journals, vol. 46(3), pages 283-300.
    2. Su, Yixuan & Zhu, Xi & Yuan, Jinlong & Teo, Kok Lay & Li, Meixia & Li, Chunfa, 2023. "An extensible multi-block layout warehouse routing optimization model," European Journal of Operational Research, Elsevier, vol. 305(1), pages 222-239.
    3. Weidinger, Felix & Boysen, Nils & Schneider, Michael, 2019. "Picker routing in the mixed-shelves warehouses of e-commerce retailers," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126182, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Letitia M. Pohl & Russell D. Meller & Kevin R. Gue, 2009. "Optimizing fishbone aisles for dual‐command operations in a warehouse," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(5), pages 389-403, August.
    5. Weidinger, Felix & Boysen, Nils, 2018. "Scattered Storage: How to Distribute Stock Keeping Units All Around a Mixed-Shelves Warehouse," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126188, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    7. Cardona, Luis F. & Soto, Diego F. & Rivera, Leonardo & Martínez, Hector J., 2015. "Detailed design of fishbone warehouse layouts with vertical travel," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 825-837.
    8. M. Çelik & H. Süral, 2016. "Order picking in a parallel-aisle warehouse with turn penalties," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4340-4355, July.
    9. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    10. Gámez Albán, Harol Mauricio & Cornelissens, Trijntje & Sörensen, Kenneth, 2024. "A new policy for scattered storage assignment to minimize picking travel distances," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1006-1020.
    11. T. S. Vaughan, 1999. "The effect of warehouse cross aisles on order picking efficiency," International Journal of Production Research, Taylor & Francis Journals, vol. 37(4), pages 881-897, March.
    12. Weidinger, Felix, 2018. "Picker routing in rectangular mixed shelves warehouses," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126186, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Zulj, I. & Glock, C. H. & Grosse, E. H. & Schneider, Michael, 2018. "Picker routing and storage-assignment strategies for precedence-constrained order picking," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 105391, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    14. Daniels, Richard L. & Rummel, Jeffrey L. & Schantz, Robert, 1998. "A model for warehouse order picking," European Journal of Operational Research, Elsevier, vol. 105(1), pages 1-17, February.
    15. Kirby Clark & Russell Meller, 2013. "Incorporating vertical travel into non-traditional cross aisles for unit-load warehouse designs," IISE Transactions, Taylor & Francis Journals, vol. 45(12), pages 1322-1331.
    16. Merrill M. Flood, 1956. "The Traveling-Salesman Problem," Operations Research, INFORMS, vol. 4(1), pages 61-75, February.
    17. Thomas Chabot & Rahma Lahyani & Leandro C. Coelho & Jacques Renaud, 2017. "Order picking problems under weight, fragility and category constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6361-6379, November.
    18. Tadumadze, Giorgi & Wenzel, Julia & Emde, Simon & Weidinger, Felix & Elbert, Ralf, 2023. "Assigning orders and pods to picking stations in a multi-level robotic mobile fulfillment system," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136885, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    19. Giorgi Tadumadze & Julia Wenzel & Simon Emde & Felix Weidinger & Ralf Elbert, 2023. "Assigning orders and pods to picking stations in a multi-level robotic mobile fulfillment system," Flexible Services and Manufacturing Journal, Springer, vol. 35(4), pages 1038-1075, December.
    20. Laporte, Gilbert, 1992. "The traveling salesman problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(2), pages 231-247, June.
    21. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    22. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    23. Felix Weidinger & Nils Boysen, 2018. "Scattered Storage: How to Distribute Stock Keeping Units All Around a Mixed-Shelves Warehouse," Service Science, INFORMS, vol. 52(6), pages 1412-1427, December.
    24. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    25. Scholz, André & Henn, Sebastian & Stuhlmann, Meike & Wäscher, Gerhard, 2016. "A new mathematical programming formulation for the Single-Picker Routing Problem," European Journal of Operational Research, Elsevier, vol. 253(1), pages 68-84.
    26. Weidinger, Felix & Boysen, Nils & Schneider, Michael, 2019. "Picker routing in the mixed-shelves warehouses of e-commerce retailers," European Journal of Operational Research, Elsevier, vol. 274(2), pages 501-515.
    27. Maximilian Schiffer & Nils Boysen & Patrick S. Klein & Gilbert Laporte & Marco Pavone, 2022. "Optimal Picking Policies in E-Commerce Warehouses," Management Science, INFORMS, vol. 68(10), pages 7497-7517, October.
    28. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    29. Dominik Goeke & Michael Schneider, 2021. "Modeling Single-Picker Routing Problems in Classical and Modern Warehouses," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 436-451, May.
    30. Roodbergen, Kees Jan & de Koster, Rene, 2001. "Routing order pickers in a warehouse with a middle aisle," European Journal of Operational Research, Elsevier, vol. 133(1), pages 32-43, August.
    31. Lu, Wenrong & McFarlane, Duncan & Giannikas, Vaggelis & Zhang, Quan, 2016. "An algorithm for dynamic order-picking in warehouse operations," European Journal of Operational Research, Elsevier, vol. 248(1), pages 107-122.
    32. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    33. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    34. Kaveh Azadeh & Debjit Roy & René De Koster, 2019. "Design, Modeling, and Analysis of Vertical Robotic Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 53(5), pages 1213-1234, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & de Koster, René, 2025. "50 years of warehousing research—An operations research perspective," European Journal of Operational Research, Elsevier, vol. 320(3), pages 449-464.
    2. Laura Korbacher & Katrin Heßler & Stefan Irnich, 2023. "The Single Picker Routing Problem with Scattered Storage: Modeling and Evaluation of Routing and Storage Policies," Working Papers 2302, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    3. Bock, Stefan & Bomsdorf, Stefan & Boysen, Nils & Schneider, Michael, 2025. "A survey on the Traveling Salesman Problem and its variants in a warehousing context," European Journal of Operational Research, Elsevier, vol. 322(1), pages 1-14.
    4. Saylam, Serhat & Çelik, Melih & Süral, Haldun, 2024. "Arc routing based compact formulations for picker routing in single and two block parallel aisle warehouses," European Journal of Operational Research, Elsevier, vol. 313(1), pages 225-240.
    5. Laura Lüke & Katrin Heßler & Stefan Irnich, 2024. "The single picker routing problem with scattered storage: modeling and evaluation of routing and storage policies," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 909-951, September.
    6. Katrin Heßler & Stefan Irnich, 2023. "Exact Solution of the Single Picker Routing Problem with Scattered Storage," Working Papers 2303, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    7. Anastasios Gialos & Vasileios Zeimpekis, 2024. "A state-of-the-art classification and review of parameters that affect the design, control, and operating strategies of order-picking systems," Operational Research, Springer, vol. 24(1), pages 1-52, March.
    8. Katrin Heßler & Stefan Irnich, 2024. "Exact Solution of the Single-Picker Routing Problem with Scattered Storage," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1417-1435, December.
    9. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    10. Arbex Valle, Cristiano & Beasley, John E, 2020. "Order batching using an approximation for the distance travelled by pickers," European Journal of Operational Research, Elsevier, vol. 284(2), pages 460-484.
    11. Gámez Albán, Harol Mauricio & Cornelissens, Trijntje & Sörensen, Kenneth, 2024. "A new policy for scattered storage assignment to minimize picking travel distances," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1006-1020.
    12. Onal, Sevilay & Zhu, Wen & Das, Sanchoy, 2023. "Order picking heuristics for online order fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 256(C).
    13. Giacomo Lanza & Mauro Passacantando & Maria Grazia Scutellà, 2023. "Sequencing and routing in a large warehouse with high degree of product rotation," Flexible Services and Manufacturing Journal, Springer, vol. 35(4), pages 1206-1255, December.
    14. Heiko Diefenbach & Simon Emde & Christoph H. Glock & Eric H. Grosse, 2022. "New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 535-573, June.
    15. Dominik Goeke & Michael Schneider, 2021. "Modeling Single-Picker Routing Problems in Classical and Modern Warehouses," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 436-451, May.
    16. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    17. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    18. Maximilian Schiffer & Nils Boysen & Patrick S. Klein & Gilbert Laporte & Marco Pavone, 2022. "Optimal Picking Policies in E-Commerce Warehouses," Management Science, INFORMS, vol. 68(10), pages 7497-7517, October.
    19. Su, Yixuan & Zhu, Xi & Yuan, Jinlong & Teo, Kok Lay & Li, Meixia & Li, Chunfa, 2023. "An extensible multi-block layout warehouse routing optimization model," European Journal of Operational Research, Elsevier, vol. 305(1), pages 222-239.
    20. Nilendra Singh Pawar & Subir S. Rao & Gajendra K. Adil, 2024. "Improving Order-Picking Performance in E-Commerce Warehouses through Entropy-Based Hierarchical Scattering," Sustainability, MDPI, vol. 16(14), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:47:y:2025:i:1:d:10.1007_s00291-024-00780-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.