IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v305y2023i1p222-239.html
   My bibliography  Save this article

An extensible multi-block layout warehouse routing optimization model

Author

Listed:
  • Su, Yixuan
  • Zhu, Xi
  • Yuan, Jinlong
  • Teo, Kok Lay
  • Li, Meixia
  • Li, Chunfa

Abstract

As a special Traveling Salesman Problem, the order picking problem is theoretically challenging and practically significant. Therefore, it has received the attention of many scholars for many years. Compared with a single block layout with parallel picking aisles, the optimal solution for a multi-block layout is much more difficult to find due to the increase in cross-aisles. In this paper, two mathematical optimization formulations are proposed to deal with the multi-block layout problem. One takes the picking position as a unit, and the other takes the picking aisle as a unit. Since picking aisles are connected to each other through specific cross aisles, different picking configurations, access modes, and constraints are introduced. The distance between picking positions is divided into horizontal distance and vertical distance, forming different parts in the objective function. On this basis, two mathematical planning models for the single picker routing problem are constructed. The scale and solution time of the two models are independent of the number of cross aisles, so they have good overall performance when compared with other optimization algorithms through numerical experiments. These models can be expanded to include important features of modern inventory systems, such as scattered storage.

Suggested Citation

  • Su, Yixuan & Zhu, Xi & Yuan, Jinlong & Teo, Kok Lay & Li, Meixia & Li, Chunfa, 2023. "An extensible multi-block layout warehouse routing optimization model," European Journal of Operational Research, Elsevier, vol. 305(1), pages 222-239.
  • Handle: RePEc:eee:ejores:v:305:y:2023:i:1:p:222-239
    DOI: 10.1016/j.ejor.2022.05.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722004349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.05.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhong, Shuya & Giannikas, Vaggelis & Merino, Jorge & McFarlane, Duncan & Cheng, Jun & Shao, Wei, 2022. "Evaluating the benefits of picking and packing planning integration in e-commerce warehouses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 67-81.
    2. Dijkstra, Arjan S. & Roodbergen, Kees Jan, 2017. "Exact route-length formulas and a storage location assignment heuristic for picker-to-parts warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 38-59.
    3. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    4. Felix Weidinger & Nils Boysen, 2018. "Scattered Storage: How to Distribute Stock Keeping Units All Around a Mixed-Shelves Warehouse," Service Science, INFORMS, vol. 52(6), pages 1412-1427, December.
    5. Weidinger, Felix & Boysen, Nils, 2018. "Scattered Storage: How to Distribute Stock Keeping Units All Around a Mixed-Shelves Warehouse," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126188, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Scholz, André & Henn, Sebastian & Stuhlmann, Meike & Wäscher, Gerhard, 2016. "A new mathematical programming formulation for the Single-Picker Routing Problem," European Journal of Operational Research, Elsevier, vol. 253(1), pages 68-84.
    7. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    8. Briant, Olivier & Cambazard, Hadrien & Cattaruzza, Diego & Catusse, Nicolas & Ladier, Anne-Laure & Ogier, Maxime, 2020. "An efficient and general approach for the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 285(2), pages 497-512.
    9. Xie, Lin & Thieme, Nils & Krenzler, Ruslan & Li, Hanyi, 2021. "Introducing split orders and optimizing operational policies in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 288(1), pages 80-97.
    10. Roodbergen, Kees Jan & de Koster, Rene, 2001. "Routing order pickers in a warehouse with a middle aisle," European Journal of Operational Research, Elsevier, vol. 133(1), pages 32-43, August.
    11. Yann Ruberg & André Scholz, 2016. "A Mathematical Programming Formulation for the Single-Picker Routing Problem in a Multi-Block Layout," FEMM Working Papers 160002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    12. Henn, Sebastian & Wäscher, Gerhard, 2012. "Tabu search heuristics for the order batching problem in manual order picking systems," European Journal of Operational Research, Elsevier, vol. 222(3), pages 484-494.
    13. Theys, Christophe & Bräysy, Olli & Dullaert, Wout & Raa, Birger, 2010. "Using a TSP heuristic for routing order pickers in warehouses," European Journal of Operational Research, Elsevier, vol. 200(3), pages 755-763, February.
    14. Fontaine, Pirmin & Crainic, Teodor Gabriel & Jabali, Ola & Rei, Walter, 2021. "Scheduled service network design with resource management for two-tier multimodal city logistics," European Journal of Operational Research, Elsevier, vol. 294(2), pages 558-570.
    15. Zhang, Yuankai & Lin, Wei-Hua & Huang, Minfang & Hu, Xiangpei, 2021. "Multi-warehouse package consolidation for split orders in online retailing," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1040-1055.
    16. Weidinger, Felix, 2018. "Picker routing in rectangular mixed shelves warehouses," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126186, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    17. Letchford, Adam N. & Nasiri, Saeideh D. & Theis, Dirk Oliver, 2013. "Compact formulations of the Steiner Traveling Salesman Problem and related problems," European Journal of Operational Research, Elsevier, vol. 228(1), pages 83-92.
    18. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    19. Daniels, Richard L. & Rummel, Jeffrey L. & Schantz, Robert, 1998. "A model for warehouse order picking," European Journal of Operational Research, Elsevier, vol. 105(1), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katrin Heßler & Stefan Irnich, 2023. "Exact Solution of the Single Picker Routing Problem with Scattered Storage," Working Papers 2303, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    2. Laura Korbacher & Katrin Heßler & Stefan Irnich, 2023. "The Single Picker Routing Problem with Scattered Storage: Modeling and Evaluation of Routing and Storage Policies," Working Papers 2302, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Korbacher & Katrin Heßler & Stefan Irnich, 2023. "The Single Picker Routing Problem with Scattered Storage: Modeling and Evaluation of Routing and Storage Policies," Working Papers 2302, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    2. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    3. Dominik Goeke & Michael Schneider, 2021. "Modeling Single-Picker Routing Problems in Classical and Modern Warehouses," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 436-451, May.
    4. Silva, Allyson & Roodbergen, Kees Jan & Coelho, Leandro C. & Darvish, Maryam, 2022. "Estimating optimal ABC zone sizes in manual warehouses," International Journal of Production Economics, Elsevier, vol. 252(C).
    5. Arbex Valle, Cristiano & Beasley, John E, 2020. "Order batching using an approximation for the distance travelled by pickers," European Journal of Operational Research, Elsevier, vol. 284(2), pages 460-484.
    6. André Scholz, 2016. "An Exact Solution Approach to the Single-Picker Routing Problem in Warehouses with an Arbitrary Block Layout," FEMM Working Papers 160006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    7. Katrin Heßler & Stefan Irnich, 2023. "Exact Solution of the Single Picker Routing Problem with Scattered Storage," Working Papers 2303, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    8. Valle, Cristiano Arbex & Beasley, John E. & da Cunha, Alexandre Salles, 2017. "Optimally solving the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 817-834.
    9. Mustapha Haouassi & Yannick Kergosien & Jorge E. Mendoza & Louis-Martin Rousseau, 2022. "The integrated orderline batching, batch scheduling, and picker routing problem with multiple pickers: the benefits of splitting customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 614-645, September.
    10. Maximilian Schiffer & Nils Boysen & Patrick S. Klein & Gilbert Laporte & Marco Pavone, 2022. "Optimal Picking Policies in E-Commerce Warehouses," Management Science, INFORMS, vol. 68(10), pages 7497-7517, October.
    11. Zhuang, Yanling & Zhou, Yun & Yuan, Yufei & Hu, Xiangpei & Hassini, Elkafi, 2022. "Order picking optimization with rack-moving mobile robots and multiple workstations," European Journal of Operational Research, Elsevier, vol. 300(2), pages 527-544.
    12. Atashi Khoei, Arsham & Süral, Haldun & Tural, Mustafa Kemal, 2023. "Energy minimizing order picker forklift routing problem," European Journal of Operational Research, Elsevier, vol. 307(2), pages 604-626.
    13. Lu, Wenrong & McFarlane, Duncan & Giannikas, Vaggelis & Zhang, Quan, 2016. "An algorithm for dynamic order-picking in warehouse operations," European Journal of Operational Research, Elsevier, vol. 248(1), pages 107-122.
    14. Justkowiak, Jan-Erik & Pesch, Erwin, 2023. "Stronger mixed-integer programming-formulations for order- and rack-sequencing in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1063-1078.
    15. Glock, Christoph H. & Grosse, Eric H. & Abedinnia, Hamid & Emde, Simon, 2019. "An integrated model to improve ergonomic and economic performance in order picking by rotating pallets," European Journal of Operational Research, Elsevier, vol. 273(2), pages 516-534.
    16. Onal, Sevilay & Zhu, Wen & Das, Sanchoy, 2023. "Order picking heuristics for online order fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 256(C).
    17. Maximilian Löffler & Michael Schneider & Ivan Žulj, 2023. "Cost-neutral reduction of infection risk in picker-to-parts warehousing systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 151-179, March.
    18. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2020. "Integrating storage location and order picking problems in warehouse planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    19. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2022. "Rack retrieval and repositioning optimization problem in robotic mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    20. Xie, Lin & Li, Hanyi & Luttmann, Laurin, 2023. "Formulating and solving integrated order batching and routing in multi-depot AGV-assisted mixed-shelves warehouses," European Journal of Operational Research, Elsevier, vol. 307(2), pages 713-730.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:305:y:2023:i:1:p:222-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.