IDEAS home Printed from https://ideas.repec.org/p/jgu/wpaper/2004.html
   My bibliography  Save this paper

Inter-Depot Moves and Dynamic-Radius Search for Multi-Depot Vehicle Routing Problems

Author

Listed:
  • Jean Bertrand Gauthier

    (Johannes Gutenberg University Mainz)

  • Stefan Irnich

    (Johannes Gutenberg University Mainz)

Abstract

Radius search is an effective neighborhood exploration technique for standard edge-exchange neighborhoods such as 2-opt, 2-opt*, swap, relocation, Or-opt, string exchange, etc. Up to now, it has only been used for vehicle routing problems with a homogeneous fleet and in the single-depot context. In this work, we extend dynamic-radius search to the multi-depot vehicle routing problem, in which 2-opt and 2-opt* moves may involve routes from different depots. To this end, we equip dynamic-radius search with a modified pruning criterion that still guarantees identifying a best-improving move, either intra-depot or inter-depot, with little additional computational effort. We experimentally confirm that substantial speedups of factors of 100 and more are observed compared to an also optimized implementation of lexicographic search, another effective neighborhood exploration technique using a feasibility-based pruning criterion. Moreover, the computational results show that depot swapping strongly favors heuristic solution quality, especially for multi-depot configurations where depots are not located close to each other.

Suggested Citation

  • Jean Bertrand Gauthier & Stefan Irnich, 2020. "Inter-Depot Moves and Dynamic-Radius Search for Multi-Depot Vehicle Routing Problems," Working Papers 2004, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  • Handle: RePEc:jgu:wpaper:2004
    as

    Download full text from publisher

    File URL: https://download.uni-mainz.de/RePEc/pdf/Discussion_Paper_2004.pdf
    File Function: First version, 2020
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    2. Savelsbergh, M. W. P., 1990. "An efficient implementation of local search algorithms for constrained routing problems," European Journal of Operational Research, Elsevier, vol. 47(1), pages 75-85, July.
    3. Schneider, Michael & Schwahn, Fabian & Vigo, Daniele, 2017. "Designing granular solution methods for routing problems with time windows," European Journal of Operational Research, Elsevier, vol. 263(2), pages 493-509.
    4. Visser, T.R. & Spliet, R., 2017. "Efficient Move Evaluations for Time-Dependent Vehicle Routing Problems," Econometric Institute Research Papers EI2017-23, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    6. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    7. Helsgaun, Keld, 2000. "An effective implementation of the Lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, Elsevier, vol. 126(1), pages 106-130, October.
    8. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    9. Jon Jouis Bentley, 1992. "Fast Algorithms for Geometric Traveling Salesman Problems," INFORMS Journal on Computing, INFORMS, vol. 4(4), pages 387-411, November.
    10. Paolo Toth & Daniele Vigo, 2003. "The Granular Tabu Search and Its Application to the Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 15(4), pages 333-346, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeanette Schmidt & Stefan Irnich, 2020. "New Neighborhoods and an Iterated Local Search Algorithm for the Generalized Traveling Salesman Problem," Working Papers 2020, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G Babin & S Deneault & G Laporte, 2007. "Improvements to the Or-opt heuristic for the symmetric travelling salesman problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 402-407, March.
    2. Jeanette Schmidt & Stefan Irnich, 2020. "New Neighborhoods and an Iterated Local Search Algorithm for the Generalized Traveling Salesman Problem," Working Papers 2020, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    3. Luca Maria Gambardella & Marco Dorigo, 2000. "An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 237-255, August.
    4. Luc Muyldermans & Patrick Beullens & Dirk Cattrysse & Dirk Van Oudheusden, 2005. "Exploring Variants of 2-Opt and 3-Opt for the General Routing Problem," Operations Research, INFORMS, vol. 53(6), pages 982-995, December.
    5. Sandra Zajac, 2018. "On a two-phase solution approach for the bi-objective k-dissimilar vehicle routing problem," Journal of Heuristics, Springer, vol. 24(3), pages 515-550, June.
    6. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    7. ARNOLD, Florian & SÖRENSEN, Kenneth, 2017. "A simple, deterministic, and efficient knowledge-driven heuristic for the vehicle routing problem," Working Papers 2017012, University of Antwerp, Faculty of Business and Economics.
    8. Yannis Marinakis & Athanasios Migdalas & Panos M. Pardalos, 2005. "A Hybrid Genetic—GRASP Algorithm Using Lagrangean Relaxation for the Traveling Salesman Problem," Journal of Combinatorial Optimization, Springer, vol. 10(4), pages 311-326, December.
    9. Chris Walshaw, 2002. "A Multilevel Approach to the Travelling Salesman Problem," Operations Research, INFORMS, vol. 50(5), pages 862-877, October.
    10. David Applegate & William Cook & André Rohe, 2003. "Chained Lin-Kernighan for Large Traveling Salesman Problems," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 82-92, February.
    11. Ahmed Kheiri & Alina G. Dragomir & David Mueller & Joaquim Gromicho & Caroline Jagtenberg & Jelke J. Hoorn, 2019. "Tackling a VRP challenge to redistribute scarce equipment within time windows using metaheuristic algorithms," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 561-595, December.
    12. Kusum Deep & Hadush Mebrahtu & Atulya K. Nagar, 2018. "Novel GA for metropolitan stations of Indian railways when modelled as a TSP," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(3), pages 639-645, June.
    13. William Cook & André Rohe, 1999. "Computing Minimum-Weight Perfect Matchings," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 138-148, May.
    14. Escobar, John Willmer & Linfati, Rodrigo & Baldoquin, Maria G. & Toth, Paolo, 2014. "A Granular Variable Tabu Neighborhood Search for the capacitated location-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 344-356.
    15. Schneider, Michael & Schwahn, Fabian & Vigo, Daniele, 2017. "Designing granular solution methods for routing problems with time windows," European Journal of Operational Research, Elsevier, vol. 263(2), pages 493-509.
    16. Manerba, Daniele & Mansini, Renata & Riera-Ledesma, Jorge, 2017. "The Traveling Purchaser Problem and its variants," European Journal of Operational Research, Elsevier, vol. 259(1), pages 1-18.
    17. Michael Schneider & Michael Drexl, 2017. "A survey of the standard location-routing problem," Annals of Operations Research, Springer, vol. 259(1), pages 389-414, December.
    18. Scianna, Marco, 2024. "The AddACO: A bio-inspired modified version of the ant colony optimization algorithm to solve travel salesman problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 357-382.
    19. Berbotto, Leonardo & García, Sergio & Nogales, Francisco J., 2011. "A vehicle routing model with split delivery and stop nodes," DES - Working Papers. Statistics and Econometrics. WS ws110906, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Shengbin Wang & Weizhen Rao & Yuan Hong, 2020. "A distance matrix based algorithm for solving the traveling salesman problem," Operational Research, Springer, vol. 20(3), pages 1505-1542, September.

    More about this item

    Keywords

    Vehicle routing; Local search; Sequential search; Dynamic-radius search; Inter-depot;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jgu:wpaper:2004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Unit IPP (email available below). General contact details of provider: https://edirc.repec.org/data/vlmaide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.