IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v10y2005i4d10.1007_s10878-005-4921-7.html
   My bibliography  Save this article

A Hybrid Genetic—GRASP Algorithm Using Lagrangean Relaxation for the Traveling Salesman Problem

Author

Listed:
  • Yannis Marinakis

    (Technical University of Crete)

  • Athanasios Migdalas

    (Technical University of Crete)

  • Panos M. Pardalos

    (University of Florida)

Abstract

Hybridization techniques are very effective for the solution of combinatorial optimization problems. This paper presents a genetic algorithm based on Expanding Neighborhood Search technique (Marinakis, Migdalas, and Pardalos, Computational Optimization and Applications, 2004) for the solution of the traveling salesman problem: The initial population of the algorithm is created not entirely at random but rather using a modified version of the Greedy Randomized Adaptive Search Procedure. Farther more a stopping criterion based on Lagrangean Relaxation is proposed. The combination of these different techniques produces high quality solutions. The proposed algorithm was tested on numerous benchmark problems from TSPLIB with very satisfactory results. Comparisons with the algorithms of the DIMACS Implementation Challenge are also presented.

Suggested Citation

  • Yannis Marinakis & Athanasios Migdalas & Panos M. Pardalos, 2005. "A Hybrid Genetic—GRASP Algorithm Using Lagrangean Relaxation for the Traveling Salesman Problem," Journal of Combinatorial Optimization, Springer, vol. 10(4), pages 311-326, December.
  • Handle: RePEc:spr:jcomop:v:10:y:2005:i:4:d:10.1007_s10878-005-4921-7
    DOI: 10.1007/s10878-005-4921-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-005-4921-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-005-4921-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Gendreau & Alain Hertz & Gilbert Laporte, 1992. "New Insertion and Postoptimization Procedures for the Traveling Salesman Problem," Operations Research, INFORMS, vol. 40(6), pages 1086-1094, December.
    2. Michael Held & Richard M. Karp, 1970. "The Traveling-Salesman Problem and Minimum Spanning Trees," Operations Research, INFORMS, vol. 18(6), pages 1138-1162, December.
    3. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    4. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    5. Jon Jouis Bentley, 1992. "Fast Algorithms for Geometric Traveling Salesman Problems," INFORMS Journal on Computing, INFORMS, vol. 4(4), pages 387-411, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuli Hu & Huan Liu & Xiaoli Wu & Ruizhi Li & Junping Zhou & Jianan Wang, 2019. "A Hybrid Framework Combining Genetic Algorithm with Iterated Local Search for the Dominating Tree Problem," Mathematics, MDPI, vol. 7(4), pages 1-14, April.
    2. Kyriakakis, Nikolaos A. & Marinaki, Magdalene & Matsatsinis, Nikolaos & Marinakis, Yannis, 2022. "A cumulative unmanned aerial vehicle routing problem approach for humanitarian coverage path planning," European Journal of Operational Research, Elsevier, vol. 300(3), pages 992-1004.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengbin Wang & Weizhen Rao & Yuan Hong, 2020. "A distance matrix based algorithm for solving the traveling salesman problem," Operational Research, Springer, vol. 20(3), pages 1505-1542, September.
    2. Helsgaun, Keld, 2000. "An effective implementation of the Lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, Elsevier, vol. 126(1), pages 106-130, October.
    3. Jean Bertrand Gauthier & Stefan Irnich, 2020. "Inter-Depot Moves and Dynamic-Radius Search for Multi-Depot Vehicle Routing Problems," Working Papers 2004, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    4. Chris Walshaw, 2002. "A Multilevel Approach to the Travelling Salesman Problem," Operations Research, INFORMS, vol. 50(5), pages 862-877, October.
    5. Luca Maria Gambardella & Marco Dorigo, 2000. "An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 237-255, August.
    6. William Cook & André Rohe, 1999. "Computing Minimum-Weight Perfect Matchings," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 138-148, May.
    7. Luc Muyldermans & Patrick Beullens & Dirk Cattrysse & Dirk Van Oudheusden, 2005. "Exploring Variants of 2-Opt and 3-Opt for the General Routing Problem," Operations Research, INFORMS, vol. 53(6), pages 982-995, December.
    8. Manerba, Daniele & Mansini, Renata & Riera-Ledesma, Jorge, 2017. "The Traveling Purchaser Problem and its variants," European Journal of Operational Research, Elsevier, vol. 259(1), pages 1-18.
    9. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    10. Jamal Ouenniche & Prasanna K. Ramaswamy & Michel Gendreau, 2017. "A dual local search framework for combinatorial optimization problems with TSP application," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1377-1398, November.
    11. G Babin & S Deneault & G Laporte, 2007. "Improvements to the Or-opt heuristic for the symmetric travelling salesman problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 402-407, March.
    12. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    13. Kusum Deep & Hadush Mebrahtu & Atulya K. Nagar, 2018. "Novel GA for metropolitan stations of Indian railways when modelled as a TSP," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(3), pages 639-645, June.
    14. Yannis Marinakis & Athanasios Migdalas & Panos M. Pardalos, 2009. "Multiple phase neighborhood Search—GRASP based on Lagrangean relaxation, random backtracking Lin–Kernighan and path relinking for the TSP," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 134-156, February.
    15. Jeanette Schmidt & Stefan Irnich, 2020. "New Neighborhoods and an Iterated Local Search Algorithm for the Generalized Traveling Salesman Problem," Working Papers 2020, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    16. David Applegate & William Cook & André Rohe, 2003. "Chained Lin-Kernighan for Large Traveling Salesman Problems," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 82-92, February.
    17. Zi-bin Jiang & Qiong Yang, 2016. "A Discrete Fruit Fly Optimization Algorithm for the Traveling Salesman Problem," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    18. Martinhon, Carlos & Lucena, Abilio & Maculan, Nelson, 2004. "Stronger K-tree relaxations for the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 158(1), pages 56-71, October.
    19. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    20. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:10:y:2005:i:4:d:10.1007_s10878-005-4921-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.