IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v104y1998i1p129-138.html
   My bibliography  Save this article

New edges not used in shortest tours of TSP

Author

Listed:
  • Sakakibara, Katsuaki

Abstract

No abstract is available for this item.

Suggested Citation

  • Sakakibara, Katsuaki, 1998. "New edges not used in shortest tours of TSP," European Journal of Operational Research, Elsevier, vol. 104(1), pages 129-138, January.
  • Handle: RePEc:eee:ejores:v:104:y:1998:i:1:p:129-138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(96)00326-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giorgio Carpaneto & Paolo Toth, 1980. "Some New Branching and Bounding Criteria for the Asymmetric Travelling Salesman Problem," Management Science, INFORMS, vol. 26(7), pages 736-743, July.
    2. Merrill M. Flood, 1956. "The Traveling-Salesman Problem," Operations Research, INFORMS, vol. 4(1), pages 61-75, February.
    3. Laporte, Gilbert, 1992. "The traveling salesman problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(2), pages 231-247, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G Laporte, 2010. "A concise guide to the Traveling Salesman Problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 35-40, January.
    2. Toth, Paolo, 2000. "Optimization engineering techniques for the exact solution of NP-hard combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 125(2), pages 222-238, September.
    3. Zhouchun Huang & Qipeng Phil Zheng & Eduardo Pasiliao & Vladimir Boginski & Tao Zhang, 2019. "A cutting plane method for risk-constrained traveling salesman problem with random arc costs," Journal of Global Optimization, Springer, vol. 74(4), pages 839-859, August.
    4. Gharehgozli, Amir Hossein & Yu, Yugang & de Koster, René & Udding, Jan Tijmen, 2014. "An exact method for scheduling a yard crane," European Journal of Operational Research, Elsevier, vol. 235(2), pages 431-447.
    5. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    6. Kusum Deep & Hadush Mebrahtu & Atulya K. Nagar, 2018. "Novel GA for metropolitan stations of Indian railways when modelled as a TSP," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(3), pages 639-645, June.
    7. Neves-Moreira, Fábio & Almada-Lobo, Bernardo & Guimarães, Luís & Amorim, Pedro, 2022. "The multi-product inventory-routing problem with pickups and deliveries: Mitigating fluctuating demand via rolling horizon heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    8. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.
    9. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex," European Journal of Operational Research, Elsevier, vol. 124(2), pages 267-282, July.
    10. Castellano, Davide & Gallo, Mosè & Grassi, Andrea & Santillo, Liberatina C., 2019. "The effect of GHG emissions on production, inventory replenishment and routing decisions in a single vendor-multiple buyers supply chain," International Journal of Production Economics, Elsevier, vol. 218(C), pages 30-42.
    11. Gagliardi, Jean-Philippe & Ruiz, Angel & Renaud, Jacques, 2008. "Space allocation and stock replenishment synchronization in a distribution center," International Journal of Production Economics, Elsevier, vol. 115(1), pages 19-27, September.
    12. Kafle, Nabin & Zou, Bo & Lin, Jane, 2017. "Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 62-82.
    13. Mengtang Li & Guoku Jia & Xun Li & Hao Qiu, 2023. "Efficient Trajectory Planning for Optimizing Energy Consumption and Completion Time in UAV-Assisted IoT Networks," Mathematics, MDPI, vol. 11(20), pages 1-19, October.
    14. Herer, Yale T., 1999. "Submodularity and the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 114(3), pages 489-508, May.
    15. Bektaş, Tolga, 2012. "Formulations and Benders decomposition algorithms for multidepot salesmen problems with load balancing," European Journal of Operational Research, Elsevier, vol. 216(1), pages 83-93.
    16. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    17. Fernández, Elena & Pozo, Miguel A. & Puerto, Justo & Scozzari, Andrea, 2017. "Ordered Weighted Average optimization in Multiobjective Spanning Tree Problem," European Journal of Operational Research, Elsevier, vol. 260(3), pages 886-903.
    18. del Castillo, Jose M., 1998. "A heuristic for the traveling salesman problem based on a continuous approximation," Transportation Research Part B: Methodological, Elsevier, vol. 33(2), pages 123-152, April.
    19. Tatiana Bassetto & Francesco Mason, 2007. "The 2-period balanced traveling salesman problem," Working Papers 154, Department of Applied Mathematics, Università Ca' Foscari Venezia, revised Oct 2007.
    20. Chen, Xi, 2018. "When does store consolidation lead to higher emissions?," International Journal of Production Economics, Elsevier, vol. 202(C), pages 109-122.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:104:y:1998:i:1:p:129-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.