IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v45y2011i8p1177-1189.html
   My bibliography  Save this article

Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains

Author

Listed:
  • Ben-Tal, Aharon
  • Chung, Byung Do
  • Mandala, Supreet Reddy
  • Yao, Tao

Abstract

This paper proposes a methodology to generate a robust logistics plan that can mitigate demand uncertainty in humanitarian relief supply chains. More specifically, we apply robust optimization (RO) for dynamically assigning emergency response and evacuation traffic flow problems with time dependent demand uncertainty. This paper studies a Cell Transmission Model (CTM) based system optimum dynamic traffic assignment model. We adopt a min-max criterion and apply an extension of the RO method adjusted to dynamic optimization problems, an affinely adjustable robust counterpart (AARC) approach. Simulation experiments show that the AARC solution provides excellent results when compared to deterministic solution and sampling based stochastic programming solution. General insights of RO and transportation that may have wider applicability in humanitarian relief supply chains are provided.

Suggested Citation

  • Ben-Tal, Aharon & Chung, Byung Do & Mandala, Supreet Reddy & Yao, Tao, 2011. "Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1177-1189, September.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:8:p:1177-1189
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261510001050
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheu, Jiuh-Biing, 2007. "An emergency logistics distribution approach for quick response to urgent relief demand in disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 687-709, November.
    2. Xie, Chi & Lin, Dung-Ying & Travis Waller, S., 2010. "A dynamic evacuation network optimization problem with lane reversal and crossing elimination strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 295-316, May.
    3. Satish Ukkusuri & S. Waller, 2008. "Linear Programming Models for the User and System Optimal Dynamic Network Design Problem: Formulations, Comparisons and Extensions," Networks and Spatial Economics, Springer, vol. 8(4), pages 383-406, December.
    4. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    5. Lindell, Michael K., 2008. "EMBLEM2: An empirically based large scale evacuation time estimate model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 140-154, January.
    6. Yin, Yafeng & Madanat, Samer M. & Lu, Xiao-Yun, 2009. "Robust improvement schemes for road networks under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 198(2), pages 470-479, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Anna C.Y. & Nozick, Linda & Xu, Ningxiong & Davidson, Rachel, 2012. "Shelter location and transportation planning under hurricane conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 715-729.
    2. Hua Sun & Ziyou Gao & W. Szeto & Jiancheng Long & Fangxia Zhao, 2014. "A Distributionally Robust Joint Chance Constrained Optimization Model for the Dynamic Network Design Problem under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 14(3), pages 409-433, December.
    3. Xiaozheng He & Srinivas Peeta, 2014. "Dynamic Resource Allocation Problem for Transportation Network Evacuation," Networks and Spatial Economics, Springer, vol. 14(3), pages 505-530, December.
    4. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    5. Chi Xie & Jennifer Duthie, 2015. "An Excess-Demand Dynamic Traffic Assignment Approach for Inferring Origin-Destination Trip Matrices," Networks and Spatial Economics, Springer, vol. 15(4), pages 947-979, December.
    6. Hong Zheng & Yi-Chang Chiu, 2011. "A Network Flow Algorithm for the Cell-Based Single-Destination System Optimal Dynamic Traffic Assignment Problem," Transportation Science, INFORMS, vol. 45(1), pages 121-137, February.
    7. Kimms, A. & Maiwald, M., 2018. "Bi-objective safe and resilient urban evacuation planning," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1122-1136.
    8. Xiaozheng He & Hong Zheng & Srinivas Peeta & Yongfu Li, 2018. "Network Design Model to Integrate Shelter Assignment with Contraflow Operations in Emergency Evacuation Planning," Networks and Spatial Economics, Springer, vol. 18(4), pages 1027-1050, December.
    9. Carey, Malachy & Watling, David, 2012. "Dynamic traffic assignment approximating the kinematic wave model: System optimum, marginal costs, externalities and tolls," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 634-648.
    10. Hadas, Yuval & Laor, Amir, 2013. "Network design model with evacuation constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 1-9.
    11. Jiancheng Long & Wai Yuen Szeto, 2019. "Link-Based System Optimum Dynamic Traffic Assignment Problems in General Networks," Operations Research, INFORMS, vol. 67(1), pages 167-182, January.
    12. Hediye Tuydes-Yaman & Athanasios Ziliaskopoulos, 2014. "Modeling demand management strategies for evacuations," Annals of Operations Research, Springer, vol. 217(1), pages 491-512, June.
    13. Doan, Kien & Ukkusuri, Satish V., 2012. "On the holding-back problem in the cell transmission based dynamic traffic assignment models," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1218-1238.
    14. Shen, Siqian & Chen, Zhihao, 2013. "Optimization models for differentiating quality of service levels in probabilistic network capacity design problems," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 71-91.
    15. Hua Wang & Xiaoning Zhang, 2017. "Game theoretical transportation network design among multiple regions," Annals of Operations Research, Springer, vol. 249(1), pages 97-117, February.
    16. Bretschneider, S. & Kimms, A., 2012. "Pattern-based evacuation planning for urban areas," European Journal of Operational Research, Elsevier, vol. 216(1), pages 57-69.
    17. Douglas Bish & Edward Chamberlayne & Hesham Rakha, 2013. "Optimizing Network Flows with Congestion-Based Flow Reductions," Networks and Spatial Economics, Springer, vol. 13(3), pages 283-306, September.
    18. Wang, Peirong (Slade) & Li, Pengfei (Taylor) & Chowdhury, Farzana R. & Zhang, Li & Zhou, Xuesong, 2020. "A mixed integer programming formulation and scalable solution algorithms for traffic control coordination across multiple intersections based on vehicle space-time trajectories," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 266-304.
    19. Ukkusuri, Satish V. & Han, Lanshan & Doan, Kien, 2012. "Dynamic user equilibrium with a path based cell transmission model for general traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1657-1684.
    20. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:8:p:1177-1189. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.