IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v46y2012i5p634-648.html
   My bibliography  Save this article

Dynamic traffic assignment approximating the kinematic wave model: System optimum, marginal costs, externalities and tolls

Author

Listed:
  • Carey, Malachy
  • Watling, David

Abstract

System marginal costs, externalities and optimal congestion tolls for traffic networks are generally derived from system optimising (SO) traffic assignment models and when they are treated as varying over time they are referred to as dynamic. In dynamic system optimum (DSO) models the link flows and travel times or costs are generally modelled using so-called ‘whole link’ models. Here we instead develop an SO model that more closely reflects traffic flow theory and derive the marginal costs and externalities from that. The most widely accepted traffic flow model appears to be the LWR (Lighthill, Whitham and Richards) model and a tractable discrete implementation or approximation to that is provided by the cell transmission model (CTM) or a finite difference approximation (FDA). These handle spillbacks, traffic controls and moving queues in a way that is consistent with the LWR model and hence with the kinematic wave model and fluid flow model. An SO formulation using the CTM is already available, assuming a single destination and a trapezoidal flow-density function. We extend the formulation to allow more general nonlinear flow density functions and derive and interpret system marginal costs and externalities. We show that if tolls computed from the DSO solution are imposed on users then the DSO solution would also satisfy the criteria for a dynamic user equilibrium (DUE). We extend the analysis to allow for physical or behavioural constraints on the link outflow proportions at merges and inflow proportions at diverges. We also extend the model to elastic demands and establish connections between the present DSO model and earlier DSO models.

Suggested Citation

  • Carey, Malachy & Watling, David, 2012. "Dynamic traffic assignment approximating the kinematic wave model: System optimum, marginal costs, externalities and tolls," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 634-648.
  • Handle: RePEc:eee:transb:v:46:y:2012:i:5:p:634-648
    DOI: 10.1016/j.trb.2012.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261512000094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2012.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malachy Carey, 1987. "Optimal Time-Varying Flows on Congested Networks," Operations Research, INFORMS, vol. 35(1), pages 58-69, February.
    2. Satish Ukkusuri & S. Waller, 2008. "Linear Programming Models for the User and System Optimal Dynamic Network Design Problem: Formulations, Comparisons and Extensions," Networks and Spatial Economics, Springer, vol. 8(4), pages 383-406, December.
    3. Boel, René & Mihaylova, Lyudmila, 2006. "A compositional stochastic model for real time freeway traffic simulation," Transportation Research Part B: Methodological, Elsevier, vol. 40(4), pages 319-334, May.
    4. Athanasios K. Ziliaskopoulos, 2000. "A Linear Programming Model for the Single Destination System Optimum Dynamic Traffic Assignment Problem," Transportation Science, INFORMS, vol. 34(1), pages 37-49, February.
    5. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    6. MERCHANT, Deepak K. & NEMHAUSER, George L., 1978. "Optimality conditions for a dynamic traffic assignment model," LIDAM Reprints CORE 345, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Deepak K. Merchant & George L. Nemhauser, 1978. "Optimality Conditions for a Dynamic Traffic Assignment Model," Transportation Science, INFORMS, vol. 12(3), pages 200-207, August.
    8. Lo, Hong K. & Szeto, W. Y., 2002. "A cell-based variational inequality formulation of the dynamic user optimal assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 421-443, June.
    9. Cayford, Randall & Lin, Wei-Hua & Daganzo, Carlos F., 1997. "The Netcell Simulation Package: Technical Description," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4j27j106, Institute of Transportation Studies, UC Berkeley.
    10. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
    11. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    12. Szeto, W. Y. & Lo, Hong K., 2004. "A cell-based simultaneous route and departure time choice model with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 593-612, August.
    13. Sumalee, A. & Zhong, R.X. & Pan, T.L. & Szeto, W.Y., 2011. "Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 507-533, March.
    14. Daganzo, Carlos F., 1995. "A finite difference approximation of the kinematic wave model of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 261-276, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiancheng Long & Hai-Jun Huang & Ziyou Gao & W. Y. Szeto, 2013. "An Intersection-Movement-Based Dynamic User Optimal Route Choice Problem," Operations Research, INFORMS, vol. 61(5), pages 1134-1147, October.
    2. Laval, Jorge A. & Cho, Hyun W. & Muñoz, Juan C. & Yin, Yafeng, 2015. "Real-time congestion pricing strategies for toll facilities," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 19-31.
    3. Lu, Chung-Cheng & Liu, Jiangtao & Qu, Yunchao & Peeta, Srinivas & Rouphail, Nagui M. & Zhou, Xuesong, 2016. "Eco-system optimal time-dependent flow assignment in a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 217-239.
    4. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    5. Parry, Katharina & Hazelton, Martin L., 2013. "Bayesian inference for day-to-day dynamic traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 104-115.
    6. Satsukawa, Koki & Wada, Kentaro & Watling, David, 2022. "Dynamic system optimal traffic assignment with atomic users: Convergence and stability," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 188-209.
    7. Long, Jiancheng & Szeto, W.Y. & Gao, Ziyou & Huang, Hai-Jun & Shi, Qin, 2016. "The nonlinear equation system approach to solving dynamic user optimal simultaneous route and departure time choice problems," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 179-206.
    8. Yan-Qun Jiang & S.C. Wong & Peng Zhang & Keechoo Choi, 2017. "Dynamic Continuum Model with Elastic Demand for a Polycentric Urban City," Transportation Science, INFORMS, vol. 51(3), pages 931-945, August.
    9. Long, Jiancheng & Wang, Chao & Szeto, W.Y., 2018. "Dynamic system optimum simultaneous route and departure time choice problems: Intersection-movement-based formulations and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 166-206.
    10. Samitha Samaranayake & Walid Krichene & Jack Reilly & Maria Laura Delle Monache & Paola Goatin & Alexandre Bayen, 2018. "Discrete-Time System Optimal Dynamic Traffic Assignment (SO-DTA) with Partial Control for Physical Queuing Networks," Transportation Science, INFORMS, vol. 52(4), pages 982-1001, August.
    11. van der Gun, Jeroen P.T. & Pel, Adam J. & van Arem, Bart, 2017. "Extending the Link Transmission Model with non-triangular fundamental diagrams and capacity drops," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 154-178.
    12. Zhao, Chuan-Lin & Leclercq, Ludovic, 2018. "Graphical solution for system optimum dynamic traffic assignment with day-based incentive routing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 87-100.
    13. Long, Jiancheng & Szeto, W.Y., 2019. "Congestion and environmental toll schemes for the morning commute with heterogeneous users and parallel routes," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 305-333.
    14. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.
    2. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    3. Friesz, Terry L. & Kim, Taeil & Kwon, Changhyun & Rigdon, Matthew A., 2011. "Approximate network loading and dual-time-scale dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 176-207, January.
    4. Zhu, Feng & Ukkusuri, Satish V., 2017. "Efficient and fair system states in dynamic transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 272-289.
    5. Long, Jiancheng & Szeto, W.Y. & Gao, Ziyou & Huang, Hai-Jun & Shi, Qin, 2016. "The nonlinear equation system approach to solving dynamic user optimal simultaneous route and departure time choice problems," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 179-206.
    6. Lu, Gongyuan & Nie, Yu(Marco) & Liu, Xiaobo & Li, Denghui, 2019. "Trajectory-based traffic management inside an autonomous vehicle zone," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 76-98.
    7. Carey, Malachy & Bar-Gera, Hillel & Watling, David & Balijepalli, Chandra, 2014. "Implementing first-in–first-out in the cell transmission model for networks," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 105-118.
    8. Wang, Peirong (Slade) & Li, Pengfei (Taylor) & Chowdhury, Farzana R. & Zhang, Li & Zhou, Xuesong, 2020. "A mixed integer programming formulation and scalable solution algorithms for traffic control coordination across multiple intersections based on vehicle space-time trajectories," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 266-304.
    9. Jiancheng Long & Wai Yuen Szeto, 2019. "Link-Based System Optimum Dynamic Traffic Assignment Problems in General Networks," Operations Research, INFORMS, vol. 67(1), pages 167-182, January.
    10. Malachy Carey & Y. Ge, 2012. "Comparison of Methods for Path Flow Reassignment for Dynamic User Equilibrium," Networks and Spatial Economics, Springer, vol. 12(3), pages 337-376, September.
    11. Georgia Perakis & Guillaume Roels, 2006. "An Analytical Model for Traffic Delays and the Dynamic User Equilibrium Problem," Operations Research, INFORMS, vol. 54(6), pages 1151-1171, December.
    12. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    13. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    14. Long, Jiancheng & Wang, Chao & Szeto, W.Y., 2018. "Dynamic system optimum simultaneous route and departure time choice problems: Intersection-movement-based formulations and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 166-206.
    15. Jabari, Saif Eddin & Liu, Henry X., 2013. "A stochastic model of traffic flow: Gaussian approximation and estimation," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 15-41.
    16. Friesz, Terry L. & Han, Ke & Neto, Pedro A. & Meimand, Amir & Yao, Tao, 2013. "Dynamic user equilibrium based on a hydrodynamic model," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 102-126.
    17. Chi Xie & Jennifer Duthie, 2015. "An Excess-Demand Dynamic Traffic Assignment Approach for Inferring Origin-Destination Trip Matrices," Networks and Spatial Economics, Springer, vol. 15(4), pages 947-979, December.
    18. Nie, Yu (Marco), 2011. "A cell-based Merchant-Nemhauser model for the system optimum dynamic traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 329-342, February.
    19. M Carey, 2009. "A framework for user equilibrium dynamic traffic assignment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 395-410, March.
    20. Carey, Malachy, 2021. "The cell transmission model with free-flow speeds varying over time or space," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 245-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:46:y:2012:i:5:p:634-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.