IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Comparison of Methods for Path Flow Reassignment for Dynamic User Equilibrium

Listed author(s):
  • Malachy Carey


  • Y. Ge


Registered author(s):

    Models to describe or predict of time-varying traffic flows and travel times on road networks are usually referred to as dynamic traffic assignment (DTA) models or dynamic user equilibrium (DUE) models. The most common form of algorithms for DUE consists of iterating between two components namely dynamic network loading (DNL) and path inflow reassignment or route choice. The DNL components in these algorithms have been investigated in many papers but in comparison the path inflow reassignment component has been relatively neglected. In view of that, we investigate various methods for path inflow reassignment that have been used in the literature. We compare them numerically by embedding them in a DUE algorithm and applying the algorithm to solve DUE problems for various simple network scenarios. We find that the choice of inflow reassignment method makes a huge difference to the speed of convergence of the algorithms and, in particular, find that ‘travel time responsive’ reassignment methods converge much faster than the other methods. We also investigate how speed of convergence is affected by the extent of congestion on the network, by higher demand or lower capacity. There appears to be much scope for further improving path inflow reassignment methods. Copyright Springer Science+Business Media, LLC 2012

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Networks and Spatial Economics.

    Volume (Year): 12 (2012)
    Issue (Month): 3 (September)
    Pages: 337-376

    in new window

    Handle: RePEc:kap:netspa:v:12:y:2012:i:3:p:337-376
    DOI: 10.1007/s11067-011-9159-6
    Contact details of provider: Web page:

    Order Information: Web:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Huang, Hai-Jun & Lam, William H. K., 2002. "Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 253-273, March.
    2. Friesz, Terry L. & Mookherjee, Reetabrata, 2006. "Solving the dynamic network user equilibrium problem with state-dependent time shifts," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 207-229, March.
    3. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
    4. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    5. Wu, J. H. & Chen, Y. & Florian, M., 1998. "The continuous dynamic network loading problem: a mathematical formulation and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 173-187, April.
    6. Rubio-Ardanaz, J. M. & Wu, J. H. & Florian, M., 2003. "Two improved numerical algorithms for the continuous dynamic network loading problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 171-190, February.
    7. Zhang, Ding & Nagurney, Anna & Wu, Jiahao, 2001. "On the equivalence between stationary link flow patterns and traffic network equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 731-748, September.
    8. Szeto, W. Y. & Lo, Hong K., 2004. "A cell-based simultaneous route and departure time choice model with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 593-612, August.
    9. Daganzo, Carlos F., 1995. "A finite difference approximation of the kinematic wave model of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 261-276, August.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:12:y:2012:i:3:p:337-376. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.