IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v12y2012i3p337-376.html
   My bibliography  Save this article

Comparison of Methods for Path Flow Reassignment for Dynamic User Equilibrium

Author

Listed:
  • Malachy Carey

    ()

  • Y. Ge

    ()

Abstract

Models to describe or predict of time-varying traffic flows and travel times on road networks are usually referred to as dynamic traffic assignment (DTA) models or dynamic user equilibrium (DUE) models. The most common form of algorithms for DUE consists of iterating between two components namely dynamic network loading (DNL) and path inflow reassignment or route choice. The DNL components in these algorithms have been investigated in many papers but in comparison the path inflow reassignment component has been relatively neglected. In view of that, we investigate various methods for path inflow reassignment that have been used in the literature. We compare them numerically by embedding them in a DUE algorithm and applying the algorithm to solve DUE problems for various simple network scenarios. We find that the choice of inflow reassignment method makes a huge difference to the speed of convergence of the algorithms and, in particular, find that ‘travel time responsive’ reassignment methods converge much faster than the other methods. We also investigate how speed of convergence is affected by the extent of congestion on the network, by higher demand or lower capacity. There appears to be much scope for further improving path inflow reassignment methods. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Malachy Carey & Y. Ge, 2012. "Comparison of Methods for Path Flow Reassignment for Dynamic User Equilibrium," Networks and Spatial Economics, Springer, vol. 12(3), pages 337-376, September.
  • Handle: RePEc:kap:netspa:v:12:y:2012:i:3:p:337-376
    DOI: 10.1007/s11067-011-9159-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11067-011-9159-6
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Hai-Jun & Lam, William H. K., 2002. "Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 253-273, March.
    2. Friesz, Terry L. & Mookherjee, Reetabrata, 2006. "Solving the dynamic network user equilibrium problem with state-dependent time shifts," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 207-229, March.
    3. Wu, J. H. & Chen, Y. & Florian, M., 1998. "The continuous dynamic network loading problem: a mathematical formulation and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 173-187, April.
    4. Rubio-Ardanaz, J. M. & Wu, J. H. & Florian, M., 2003. "Two improved numerical algorithms for the continuous dynamic network loading problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 171-190, February.
    5. Zhang, Ding & Nagurney, Anna & Wu, Jiahao, 2001. "On the equivalence between stationary link flow patterns and traffic network equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 731-748, September.
    6. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
    7. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    8. Szeto, W. Y. & Lo, Hong K., 2004. "A cell-based simultaneous route and departure time choice model with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 593-612, August.
    9. Daganzo, Carlos F., 1995. "A finite difference approximation of the kinematic wave model of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 261-276, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Ma & Xuegang Ban & Jong-Shi Pang & Henry Liu, 2015. "Submission to the DTA2012 Special Issue: Convergence of Time Discretization Schemes for Continuous-Time Dynamic Network Loading Models," Networks and Spatial Economics, Springer, vol. 15(3), pages 419-441, September.
    2. Rasmussen, Thomas Kjær & Watling, David Paul & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part II – Solving the restricted SUE for the logit family," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 146-165.
    3. repec:kap:netspa:v:17:y:2017:i:4:d:10.1007_s11067-017-9379-5 is not listed on IDEAS
    4. Rui Ma & Xuegang Ban & Jong-Shi Pang & Henry Liu, 2015. "Submission to the DTA2012 Special Issue: Approximating Time Delays in Solving Continuous-Time Dynamic User Equilibria," Networks and Spatial Economics, Springer, vol. 15(3), pages 443-463, September.
    5. repec:kap:netspa:v:17:y:2017:i:3:d:10.1007_s11067-017-9346-1 is not listed on IDEAS
    6. Watling, David Paul & Rasmussen, Thomas Kjær & Prato, Carlo Giacomo & Nielsen, Otto Anker, 2015. "Stochastic user equilibrium with equilibrated choice sets: Part I – Model formulations under alternative distributions and restrictions," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 166-181.
    7. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:12:y:2012:i:3:p:337-376. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.