IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v32y1998i3p173-187.html
   My bibliography  Save this article

The continuous dynamic network loading problem: a mathematical formulation and solution method

Author

Listed:
  • Wu, J. H.
  • Chen, Y.
  • Florian, M.

Abstract

The continuous dynamic network loading problem aims to find, on a congested network, temporal arc volumes, arc travel times, and path travel times given time-dependent path flow rates for a given time period. This problem may be considered as a subproblem of a temporal (dynamic) traffic assignment problem. In this paper, we study this problem and formulate it as a system of functional equations. Based on this system, we show that the FIFO (First In, First Out) condition is respected under a reasonable assumption. For computational purposes, we develop a polynomial approximation, which is almost equivalent to the original formulation on a set of finite discrete points. The approximation formulation is a finite dimensional system of equations which is solved as an optimization problem. The optimization problem may or may not be smooth depending on the structure of arc travel times. Several numerical examples are given to illustrate this approach.

Suggested Citation

  • Wu, J. H. & Chen, Y. & Florian, M., 1998. "The continuous dynamic network loading problem: a mathematical formulation and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 173-187, April.
  • Handle: RePEc:eee:transb:v:32:y:1998:i:3:p:173-187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(97)00023-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. MERCHANT, Deepak K. & NEMHAUSER, George L., 1978. "Optimality conditions for a dynamic traffic assignment model," LIDAM Reprints CORE 345, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Daganzo, Carlos F., 1995. "Properties of link travel time functions under dynamic loads," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 95-98, April.
    3. Bin Ran & David E. Boyce & Larry J. LeBlanc, 1993. "A New Class of Instantaneous Dynamic User-Optimal Traffic Assignment Models," Operations Research, INFORMS, vol. 41(1), pages 192-202, February.
    4. Byung-Wook Wie & Roger L. Tobin & Terry L. Friesz & David Bernstein, 1995. "A Discrete Time, Nested Cost Operator Approach to the Dynamic Network User Equilibrium Problem," Transportation Science, INFORMS, vol. 29(1), pages 79-92, February.
    5. Deepak K. Merchant & George L. Nemhauser, 1978. "Optimality Conditions for a Dynamic Traffic Assignment Model," Transportation Science, INFORMS, vol. 12(3), pages 200-207, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carey, Malachy & McCartney, Mark, 2002. "Behaviour of a whole-link travel time model used in dynamic traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 36(1), pages 83-95, January.
    2. Friesz, Terry L. & Kim, Taeil & Kwon, Changhyun & Rigdon, Matthew A., 2011. "Approximate network loading and dual-time-scale dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 176-207, January.
    3. Li, Jun & Fujiwara, Okitsugu & Kawakami, Shogo, 2000. "A reactive dynamic user equilibrium model in network with queues," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 605-624, November.
    4. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Modeling and solving continuous-time instantaneous dynamic user equilibria: A differential complementarity systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 389-408.
    5. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
    6. Sheu, Jiuh-Biing, 2006. "A composite traffic flow modeling approach for incident-responsive network traffic assignment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 461-478.
    7. Lam, William H. K. & Huang, Hai-Jun, 1995. "Dynamic user optimal traffic assignment model for many to one travel demand," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 243-259, August.
    8. Friesz, Terry L. & Han, Ke & Neto, Pedro A. & Meimand, Amir & Yao, Tao, 2013. "Dynamic user equilibrium based on a hydrodynamic model," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 102-126.
    9. Lu, Gongyuan & Nie, Yu(Marco) & Liu, Xiaobo & Li, Denghui, 2019. "Trajectory-based traffic management inside an autonomous vehicle zone," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 76-98.
    10. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.
    11. Chow, Andy H.F., 2009. "Properties of system optimal traffic assignment with departure time choice and its solution method," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 325-344, March.
    12. Long, Jiancheng & Wang, Chao & Szeto, W.Y., 2018. "Dynamic system optimum simultaneous route and departure time choice problems: Intersection-movement-based formulations and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 166-206.
    13. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Continuous-time point-queue models in dynamic network loading," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 360-380.
    14. Jin, Wen-Long, 2015. "On the existence of stationary states in general road networks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 917-929.
    15. Ran, Bin & Boyce, David E., 1995. "Ideal Dynamic User-Optimal Route Choice: A Link-Based Variational Inequality Formulation," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3t4686x6, Institute of Transportation Studies, UC Berkeley.
    16. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    17. Han, Ke & Friesz, Terry L. & Yao, Tao, 2013. "A partial differential equation formulation of Vickrey’s bottleneck model, part II: Numerical analysis and computation," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 75-93.
    18. Zhu, Feng & Ukkusuri, Satish V., 2017. "Efficient and fair system states in dynamic transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 272-289.
    19. Jiancheng Long & Hai-Jun Huang & Ziyou Gao & W. Y. Szeto, 2013. "An Intersection-Movement-Based Dynamic User Optimal Route Choice Problem," Operations Research, INFORMS, vol. 61(5), pages 1134-1147, October.
    20. Long, Jiancheng & Szeto, W.Y. & Gao, Ziyou & Huang, Hai-Jun & Shi, Qin, 2016. "The nonlinear equation system approach to solving dynamic user optimal simultaneous route and departure time choice problems," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 179-206.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:32:y:1998:i:3:p:173-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.