IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v46y2012i3p389-408.html
   My bibliography  Save this article

Modeling and solving continuous-time instantaneous dynamic user equilibria: A differential complementarity systems approach

Author

Listed:
  • Ban, Xuegang (Jeff)
  • Pang, Jong-Shi
  • Liu, Henry X.
  • Ma, Rui

Abstract

This paper is the second of a two-part research wherein we undertake a mathematically rigorous investigation of the continuous-time dynamic user equilibrium (DUE) problem using the recently introduced mathematical paradigm of differential complementarity systems (DCSs). Based on the thorough study of continuous-time single-destination point-queue models in the previous part, we first extend this special case to multiple destinations respecting the First-In–First-Out property of travel flows. A DCS with constant time delay is then introduced to formulate the continuous-time model of instantaneous dynamic traffic equilibria (IDUE) with a fixed demand profile. We develop a time decomposition scheme based on link free flow travel times to convert the delay DCS to a series of DCSs without time delays that are solved by a numerical time-stepping method. We provide rigorous numerical treatment of the time-decomposed IDUE model, including solvability of the discrete-time complementarity problems and convergence of the numerical trajectories to a continuous-time solution. We present numerical results to validate the IDUE on a small network and also on the Sioux Falls network.

Suggested Citation

  • Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Modeling and solving continuous-time instantaneous dynamic user equilibria: A differential complementarity systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 389-408.
  • Handle: RePEc:eee:transb:v:46:y:2012:i:3:p:389-408
    DOI: 10.1016/j.trb.2011.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261511001688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2011.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Friesz, Terry L. & Mookherjee, Reetabrata, 2006. "Solving the dynamic network user equilibrium problem with state-dependent time shifts," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 207-229, March.
    2. Kuwahara, Masao & Akamatsu, Takashi, 2001. "Dynamic user optimal assignment with physical queues for a many-to-many OD pattern," Transportation Research Part B: Methodological, Elsevier, vol. 35(5), pages 461-479, June.
    3. MERCHANT, Deepak K. & NEMHAUSER, George L., 1978. "Optimality conditions for a dynamic traffic assignment model," LIDAM Reprints CORE 345, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Camlibel, M.K., 2001. "Complementarity methods in the analysis of piecewise linear dynamical systems," Other publications TiSEM c3e08484-56d2-4f1a-9db0-8, Tilburg University, School of Economics and Management.
    5. Friesz, Terry L. & Kim, Taeil & Kwon, Changhyun & Rigdon, Matthew A., 2011. "Approximate network loading and dual-time-scale dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 176-207, January.
    6. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    7. Daoli Zhu & Patrice Marcotte, 2000. "On the Existence of Solutions to the Dynamic User Equilibrium Problem," Transportation Science, INFORMS, vol. 34(4), pages 402-414, November.
    8. Daganzo, Carlos F., 1995. "Properties of link travel time functions under dynamic loads," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 95-98, April.
    9. Y. W. Xu & J. H. Wu & M. Florian & P. Marcotte & D. L. Zhu, 1999. "Advances in the Continuous Dynamic Network Loading Problem," Transportation Science, INFORMS, vol. 33(4), pages 341-353, November.
    10. Bin Ran & David E. Boyce & Larry J. LeBlanc, 1993. "A New Class of Instantaneous Dynamic User-Optimal Traffic Assignment Models," Operations Research, INFORMS, vol. 41(1), pages 192-202, February.
    11. Carey, Malachy & McCartney, Mark, 2002. "Behaviour of a whole-link travel time model used in dynamic traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 36(1), pages 83-95, January.
    12. Terry L. Friesz & David Bernstein & Tony E. Smith & Roger L. Tobin & B. W. Wie, 1993. "A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem," Operations Research, INFORMS, vol. 41(1), pages 179-191, February.
    13. MERCHANT, Deepak K. & NEMHAUSER, George L., 1978. "A model and an algorithm for the dynamic traffic assignment problems," LIDAM Reprints CORE 346, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Deepak K. Merchant & George L. Nemhauser, 1978. "Optimality Conditions for a Dynamic Traffic Assignment Model," Transportation Science, INFORMS, vol. 12(3), pages 200-207, August.
    15. Heemels, W.P.M.H. & Schumacher, J.M. & Weiland, S., 2000. "Linear complimentarity systems," Other publications TiSEM 6cdf0170-6ea9-4fdc-8cfa-6, Tilburg University, School of Economics and Management.
    16. Lam, William H. K. & Huang, Hai-Jun, 1995. "Dynamic user optimal traffic assignment model for many to one travel demand," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 243-259, August.
    17. Terry L. Friesz, 2010. "Dynamic User Equilibrium," International Series in Operations Research & Management Science, in: Dynamic Optimization and Differential Games, chapter 0, pages 411-456, Springer.
    18. Kuwahara, Masao & Akamatsu, Takashi, 1997. "Decomposition of the reactive dynamic assignments with queues for a many-to-many origin-destination pattern," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 1-10, February.
    19. Deepak K. Merchant & George L. Nemhauser, 1978. "A Model and an Algorithm for the Dynamic Traffic Assignment Problems," Transportation Science, INFORMS, vol. 12(3), pages 183-199, August.
    20. Ban, Xuegang (Jeff) & Liu, Henry X. & Ferris, Michael C. & Ran, Bin, 2008. "A link-node complementarity model and solution algorithm for dynamic user equilibria with exact flow propagations," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 823-842, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    2. Yu, Hao & Ma, Rui & Zhang, H. Michael, 2018. "Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 302-325.
    3. Du, Bo & Wang, David Z.W., 2014. "Continuum modeling of park-and-ride services considering travel time reliability and heterogeneous commuters – A linear complementarity system approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 58-81.
    4. Wang, David Z.W. & Du, Bo, 2016. "Continuum modelling of spatial and dynamic equilibrium in a travel corridor with heterogeneous commuters—A partial differential complementarity system approach," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 1-18.
    5. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    6. Long, Jiancheng & Szeto, W.Y. & Gao, Ziyou & Huang, Hai-Jun & Shi, Qin, 2016. "The nonlinear equation system approach to solving dynamic user optimal simultaneous route and departure time choice problems," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 179-206.
    7. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    8. Ma, Jie & Xu, Min & Meng, Qiang & Cheng, Lin, 2020. "Ridesharing user equilibrium problem under OD-based surge pricing strategy," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 1-24.
    9. Friesz, Terry L. & Han, Ke, 2019. "The mathematical foundations of dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 309-328.
    10. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2020. "Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 87-109.
    11. Zhi-Yang Lin & S. C. Wong & Peng Zhang & Keechoo Choi, 2018. "A Predictive Continuum Dynamic User-Optimal Model for the Simultaneous Departure Time and Route Choice Problem in a Polycentric City," Service Science, INFORMS, vol. 52(6), pages 1496-1508, December.
    12. Ma, Rui & Ban, Xuegang (Jeff) & Szeto, W.Y., 2017. "Emission modeling and pricing on single-destination dynamic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 255-283.
    13. N. Nezamuddin & Stephen Boyles, 2015. "A Continuous DUE Algorithm Using the Link Transmission Model," Networks and Spatial Economics, Springer, vol. 15(3), pages 465-483, September.
    14. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Continuous-time point-queue models in dynamic network loading," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 360-380.
    2. Friesz, Terry L. & Kim, Taeil & Kwon, Changhyun & Rigdon, Matthew A., 2011. "Approximate network loading and dual-time-scale dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 176-207, January.
    3. Friesz, Terry L. & Han, Ke & Neto, Pedro A. & Meimand, Amir & Yao, Tao, 2013. "Dynamic user equilibrium based on a hydrodynamic model," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 102-126.
    4. Lu, Gongyuan & Nie, Yu(Marco) & Liu, Xiaobo & Li, Denghui, 2019. "Trajectory-based traffic management inside an autonomous vehicle zone," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 76-98.
    5. Tong, C. O. & Wong, S. C., 2000. "A predictive dynamic traffic assignment model in congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 625-644, November.
    6. Long, Jiancheng & Wang, Chao & Szeto, W.Y., 2018. "Dynamic system optimum simultaneous route and departure time choice problems: Intersection-movement-based formulations and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 166-206.
    7. Rui Ma & Xuegang (Jeff) Ban & Jong-Shi Pang, 2018. "A Link-Based Differential Complementarity System Formulation for Continuous-Time Dynamic User Equilibria with Queue Spillbacks," Transportation Science, INFORMS, vol. 52(3), pages 564-592, June.
    8. B. G. Heydecker & J. D. Addison, 2005. "Analysis of Dynamic Traffic Equilibrium with Departure Time Choice," Transportation Science, INFORMS, vol. 39(1), pages 39-57, February.
    9. Luo, Shiaw-Shyan & Wang, Chung-Yung & Sung, Yi-Wei, 2018. "Time-dependent trip-chain link travel time estimation model with the first-in–first-out constraint," European Journal of Operational Research, Elsevier, vol. 267(2), pages 415-427.
    10. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    11. Friesz, Terry L. & Han, Ke, 2019. "The mathematical foundations of dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 309-328.
    12. Zhong, R.X. & Sumalee, A. & Friesz, T.L. & Lam, William H.K., 2011. "Dynamic user equilibrium with side constraints for a traffic network: Theoretical development and numerical solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1035-1061, August.
    13. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.
    14. Han, Ke & Friesz, Terry L. & Yao, Tao, 2013. "Existence of simultaneous route and departure choice dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 17-30.
    15. Zhu, Feng & Ukkusuri, Satish V., 2017. "Efficient and fair system states in dynamic transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 272-289.
    16. Long, Jiancheng & Szeto, W.Y. & Gao, Ziyou & Huang, Hai-Jun & Shi, Qin, 2016. "The nonlinear equation system approach to solving dynamic user optimal simultaneous route and departure time choice problems," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 179-206.
    17. Carey, Malachy & Humphreys, Paul & McHugh, Marie & McIvor, Ronan, 2014. "Extending travel-time based models for dynamic network loading and assignment, to achieve adherence to first-in-first-out and link capacities," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 90-104.
    18. Chow, Andy H.F., 2009. "Properties of system optimal traffic assignment with departure time choice and its solution method," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 325-344, March.
    19. Li, Jun & Fujiwara, Okitsugu & Kawakami, Shogo, 2000. "A reactive dynamic user equilibrium model in network with queues," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 605-624, November.
    20. Rui Ma & Xuegang Ban & Jong-Shi Pang & Henry Liu, 2015. "Submission to the DTA2012 Special Issue: Convergence of Time Discretization Schemes for Continuous-Time Dynamic Network Loading Models," Networks and Spatial Economics, Springer, vol. 15(3), pages 419-441, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:46:y:2012:i:3:p:389-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.