IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v35y2001i5p461-479.html
   My bibliography  Save this article

Dynamic user optimal assignment with physical queues for a many-to-many OD pattern

Author

Listed:
  • Kuwahara, Masao
  • Akamatsu, Takashi

Abstract

This research extends the dynamic user optimal assignment under the point queue concept so as to deal with physical queues. Given time-dependent many-to-many OD volumes, this paper first shows the formulation of the assignment subject to the flow conservation and the first-in-first-out (FIFO) queue discipline. The optimal condition is then defined and the physical queue propagation based on the kinematic wave theory is discussed. Finally, a solution algorithm is proposed and typical differences between point and physical queue analyses are presented through an example calculation.

Suggested Citation

  • Kuwahara, Masao & Akamatsu, Takashi, 2001. "Dynamic user optimal assignment with physical queues for a many-to-many OD pattern," Transportation Research Part B: Methodological, Elsevier, vol. 35(5), pages 461-479, June.
  • Handle: RePEc:eee:transb:v:35:y:2001:i:5:p:461-479
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(00)00005-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    2. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    3. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    4. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Zhang, Mengping, 2015. "Reformulating the Hoogendoorn–Bovy predictive dynamic user-optimal model in continuum space with anisotropic condition," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 189-217.
    2. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    3. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Modeling and solving continuous-time instantaneous dynamic user equilibria: A differential complementarity systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 389-408.
    4. Flötteröd, Gunnar & Rohde, Jannis, 2011. "Operational macroscopic modeling of complex urban road intersections," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 903-922, July.
    5. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Xiong, Tao & Zhang, Mengping & Choi, Keechoo, 2013. "Revisiting Jiang’s dynamic continuum model for urban cities," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 96-119.
    6. Lo, Hong K. & Szeto, W.Y., 2005. "Road pricing modeling for hyper-congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 705-722.
    7. Blumberg, Michal & Bar-Gera, Hillel, 2009. "Consistent node arrival order in dynamic network loading models," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 285-300, March.
    8. repec:eee:transb:v:111:y:2018:i:c:p:370-394 is not listed on IDEAS
    9. Mounce, Richard, 2006. "Convergence in a continuous dynamic queueing model for traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 779-791, November.
    10. Jiang, Yanqun & Wong, S.C. & Ho, H.W. & Zhang, Peng & Liu, Ruxun & Sumalee, Agachai, 2011. "A dynamic traffic assignment model for a continuum transportation system," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 343-363, February.
    11. Long, Jiancheng & Gao, Ziyou & Szeto, W.Y., 2011. "Discretised link travel time models based on cumulative flows: Formulations and properties," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 232-254, January.
    12. Zhen Qian & H. Zhang, 2013. "A Hybrid Route Choice Model for Dynamic Traffic Assignment," Networks and Spatial Economics, Springer, vol. 13(2), pages 183-203, June.
    13. Kachani, Soulaymane & Perakis, Georgia, 2006. "Fluid dynamics models and their applications in transportation and pricing," European Journal of Operational Research, Elsevier, vol. 170(2), pages 496-517, April.
    14. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:35:y:2001:i:5:p:461-479. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.