IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v40y2006i9p779-791.html
   My bibliography  Save this article

Convergence in a continuous dynamic queueing model for traffic networks

Author

Listed:
  • Mounce, Richard

Abstract

The paper considers a dynamic traffic assignment model with deterministic queueing and inelastic demand for each origin-destination (OD) pair in the network. Two types of time-varying behaviour are modelled. First, within-day time is regarded as a continuous variable. During each day, flows propagating through routes connecting OD pairs are represented by non-negative, essentially bounded and measurable functions. Also, day-to-day time is (slightly surprisingly) modelled as if it were continuous. The day-to-day dynamical system that is adopted is derived naturally from the usual user equilibrium condition. The route cost is shown to be a Lipschitz continuous function of route flow in the single bottleneck per route case. Global convergence to equilibrium is shown to be guaranteed when the route cost vector is a non-decreasing (monotone) function of the route flow vector. In the single bottleneck per route case, the route cost function is shown to be a monotone function of the route flow if the bottleneck capacities are all non-decreasing as functions of within-day time. Monotonicity of the route cost function is also shown to hold when each bottleneck has at most one route passing through it.

Suggested Citation

  • Mounce, Richard, 2006. "Convergence in a continuous dynamic queueing model for traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 779-791, November.
  • Handle: RePEc:eee:transb:v:40:y:2006:i:9:p:779-791
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(05)00115-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuwahara, Masao & Akamatsu, Takashi, 2001. "Dynamic user optimal assignment with physical queues for a many-to-many OD pattern," Transportation Research Part B: Methodological, Elsevier, vol. 35(5), pages 461-479, June.
    2. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    3. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    4. Watling, David, 1999. "Stability of the stochastic equilibrium assignment problem: a dynamical systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 281-312, May.
    5. Wie, Byung-Wook & Tobin, Roger L. & Carey, Malachy, 2002. "The existence, uniqueness and computation of an arc-based dynamic network user equilibrium formulation," Transportation Research Part B: Methodological, Elsevier, vol. 36(10), pages 897-918, December.
    6. Michael J. Smith, 1984. "The Stability of a Dynamic Model of Traffic Assignment---An Application of a Method of Lyapunov," Transportation Science, INFORMS, vol. 18(3), pages 245-252, August.
    7. Smith, M. J. & Ghali, M., 1990. "The dynamics of traffic assignment and traffic control: A theoretical study," Transportation Research Part B: Methodological, Elsevier, vol. 24(6), pages 409-422, December.
    8. Ghali, M. O. & Smith, M. J., 1995. "A model for the dynamic system optimum traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 29(3), pages 155-170, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgia Perakis & Guillaume Roels, 2006. "An Analytical Model for Traffic Delays and the Dynamic User Equilibrium Problem," Operations Research, INFORMS, vol. 54(6), pages 1151-1171, December.
    2. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    3. Samitha Samaranayake & Walid Krichene & Jack Reilly & Maria Laura Delle Monache & Paola Goatin & Alexandre Bayen, 2018. "Discrete-Time System Optimal Dynamic Traffic Assignment (SO-DTA) with Partial Control for Physical Queuing Networks," Transportation Science, INFORMS, vol. 52(4), pages 982-1001, August.
    4. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.
    5. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    6. Wang, Guanfeng & Jia, Hongfei & Feng, Tao & Tian, Jingjing & Wu, Ruiyi & Gao, Heyao & Liu, Chao, 2024. "Modelling the dual dynamic traffic flow evolution with information perception differences between human-driven vehicles and connected autonomous vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    7. Kachani, Soulaymane & Perakis, Georgia, 2006. "Fluid dynamics models and their applications in transportation and pricing," European Journal of Operational Research, Elsevier, vol. 170(2), pages 496-517, April.
    8. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    9. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    10. McCrea, Jennifer & Moutari, Salissou, 2010. "A hybrid macroscopic-based model for traffic flow in road networks," European Journal of Operational Research, Elsevier, vol. 207(2), pages 676-684, December.
    11. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    13. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    14. Pedro Cesar Lopes Gerum & Andrew Reed Benton & Melike Baykal-Gürsoy, 2019. "Traffic density on corridors subject to incidents: models for long-term congestion management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 795-831, December.
    15. Zhu, Feng & Ukkusuri, Satish V., 2017. "Efficient and fair system states in dynamic transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 272-289.
    16. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    17. Han, Linghui & Sun, Huijun & Wu, Jianjun & Zhu, Chengjuan, 2011. "Day-to-day evolution of the traffic network with Advanced Traveler Information System," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 914-919.
    18. Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    19. Gao, Yang & Levinson, David, 2024. "A multi-stage spatial queueing model with logistic arrivals and departures consistent with the microscopic fundamental diagram and hysteresis," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    20. Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:40:y:2006:i:9:p:779-791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.