IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v33y1999i4p281-312.html
   My bibliography  Save this article

Stability of the stochastic equilibrium assignment problem: a dynamical systems approach

Author

Listed:
  • Watling, David

Abstract

The question of whether plausible dynamical adjustment processes converge to equilibrium was brought to attention by the compelling analysis of Horowitz (1984). The stability of stochastic equilibrium in a two link transportation network. Transportation Research 18B (1), 13-28. His analysis of discrete time processes, and the question of their convergence to stochastic equilibrium, had the significant restriction of applying only to two-link networks. In spite of a number of significant works on this 'stability' issue since, the extension of Horowitz's results to general networks has still not been achieved, and this forms the motivation for the present paper. Previous analyses of traffic assignment stability are first reviewed and classified. The key, and often misunderstood, distinctions are clarified: between stability in discrete time and continuous time, and between stability with respect to deterministic and stochastic processes. It is discussed how analyses since Horowitz's characterise much milder notions of stability. A simple dynamical adjustment process is then proposed for studying the stability of the general asymmetric stochastic equilibrium assignment problem in discrete time. Classical techniques from the dynamical systems literature are then applied in three ways, resulting in: a sufficient condition for stability, applicable to a significant subset of practical problems; a widely-applicable sufficient condition for instability; and a method for estimating domains of attraction for problems with multiple equilibria. The tests are illustrated in relation to a number of simple examples. In principle, they are applicable to networks of an arbitrary size, although further tests would be required to determine the computational feasibility of these techniques in large networks.

Suggested Citation

  • Watling, David, 1999. "Stability of the stochastic equilibrium assignment problem: a dynamical systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 281-312, May.
  • Handle: RePEc:eee:transb:v:33:y:1999:i:4:p:281-312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(98)00033-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Watling, David, 1996. "Asymmetric problems and stochastic process models of traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 30(5), pages 339-357, October.
    2. Attahiru Sule Alfa & Do Le Minh, 1979. "A Stochastic Model for the Temporal Distribution of Traffic Demand---The Peak Hour Problem," Transportation Science, INFORMS, vol. 13(4), pages 315-324, November.
    3. Smith, M. J., 1979. "The existence, uniqueness and stability of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 295-304, December.
    4. Gary A. Davis & Nancy L. Nihan, 1993. "Large Population Approximations of a General Stochastic Traffic Assignment Model," Operations Research, INFORMS, vol. 41(1), pages 169-178, February.
    5. Vythoulkas, Petros C., 1990. "A dynamic stochastic assignment model for the analysis of general networks," Transportation Research Part B: Methodological, Elsevier, vol. 24(6), pages 453-469, December.
    6. Michael J. Smith, 1984. "The Stability of a Dynamic Model of Traffic Assignment---An Application of a Method of Lyapunov," Transportation Science, INFORMS, vol. 18(3), pages 245-252, August.
    7. Horowitz, Joel L., 1984. "The stability of stochastic equilibrium in a two-link transportation network," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 13-28, February.
    8. Terry L. Friesz & David Bernstein & Nihal J. Mehta & Roger L. Tobin & Saiid Ganjalizadeh, 1994. "Day-To-Day Dynamic Network Disequilibria and Idealized Traveler Information Systems," Operations Research, INFORMS, vol. 42(6), pages 1120-1136, December.
    9. Moshe Ben-Akiva & Andre de Palma & Pavlos Kanaroglou, 1986. "Dynamic Model of Peak Period Traffic Congestion with Elastic Arrival Rates," Transportation Science, INFORMS, vol. 20(3), pages 164-181, August.
    10. Terry L. Friesz & David Bernstein & Roger Stough, 1996. "Dynamic Systems, Variational Inequalities and Control Theoretic Models for Predicting Time-Varying Urban Network Flows," Transportation Science, INFORMS, vol. 30(1), pages 14-31, February.
    11. Cascetta, Ennio, 1989. "A stochastic process approach to the analysis of temporal dynamics in transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(1), pages 1-17, February.
    12. Zhang, Ding & Nagurney, Anna, 1996. "On the local and global stability of a travel route choice adjustment process," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 245-262, August.
    13. Heydecker, B. G., 1986. "On the definition of traffic equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 20(6), pages 435-440, December.
    14. G. E. Cantarella & E. Cascetta, 1995. "Dynamic Processes and Equilibrium in Transportation Networks: Towards a Unifying Theory," Transportation Science, INFORMS, vol. 29(4), pages 305-329, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bie, Jing & Lo, Hong K., 2010. "Stability and attraction domains of traffic equilibria in a day-to-day dynamical system formulation," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 90-107, January.
    2. Watling, David, 1998. "Perturbation stability of the asymmetric stochastic equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 32(3), pages 155-171, April.
    3. G. E. Cantarella & D. P. Watling, 2016. "Modelling road traffic assignment as a day-to-day dynamic, deterministic process: a unified approach to discrete- and continuous-time models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 69-98, March.
    4. Meneguzzer, Claudio, 2022. "Day-to-day dynamics in a simple traffic network with mixed direct and contrarian route choice behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    5. Watling, David, 1996. "Asymmetric problems and stochastic process models of traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 30(5), pages 339-357, October.
    6. Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    7. Jiayang Li & Zhaoran Wang & Yu Marco Nie, 2023. "Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice," Papers 2304.02500, arXiv.org, revised Feb 2024.
    8. Kumar, Amit & Peeta, Srinivas, 2015. "A day-to-day dynamical model for the evolution of path flows under disequilibrium of traffic networks with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 235-256.
    9. He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2010. "A link-based day-to-day traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 597-608, May.
    10. Wang, Jian & He, Xiaozheng & Peeta, Srinivas, 2016. "Sensitivity analysis based approximation models for day-to-day link flow evolution process," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 35-53.
    11. Ye, Hongbo & Yang, Hai, 2013. "Continuous price and flow dynamics of tradable mobility credits," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 436-450.
    12. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    13. Rambha, Tarun & Boyles, Stephen D., 2016. "Dynamic pricing in discrete time stochastic day-to-day route choice models," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 104-118.
    14. Liu, Ronghui & Van Vliet, Dirck & Watling, David, 2006. "Microsimulation models incorporating both demand and supply dynamics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 125-150, February.
    15. Iryo, Takamasa, 2016. "Day-to-day dynamical model incorporating an explicit description of individuals’ information collection behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 88-103.
    16. Paolo Delle Site, 2017. "On the Equivalence Between SUE and Fixed-Point States of Day-to-Day Assignment Processes with Serially-Correlated Route Choice," Networks and Spatial Economics, Springer, vol. 17(3), pages 935-962, September.
    17. Xiaomei Zhao & Chunhua Wan & Jun Bi, 2019. "Day-to-Day Assignment Models and Traffic Dynamics Under Information Provision," Networks and Spatial Economics, Springer, vol. 19(2), pages 473-502, June.
    18. Han, Linghui & Wang, David Z.W. & Lo, Hong K. & Zhu, Chengjuan & Cai, Xingju, 2017. "Discrete-time day-to-day dynamic congestion pricing scheme considering multiple equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 1-16.
    19. Huijun Sun & Si Zhang & Linghui Han & Xiaomei Zhao & Lu Lou, 2020. "Day-to-Day Evolution Model Based on Dynamic Reference Point with Heterogeneous Travelers," Networks and Spatial Economics, Springer, vol. 20(4), pages 935-961, December.
    20. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:33:y:1999:i:4:p:281-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.