IDEAS home Printed from
   My bibliography  Save this article

The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory


  • Daganzo, Carlos F.


This paper presents a simple representation of traffic on a highway with a single entrance and exit. The representation can be used to predict traffic's evolution over time and space, including transient phenomena such as the building, propagation, and dissipation of queues. The easy-to-solve difference equations used to predict traffic's evolution are shown to be the discrete analog of the differential equations arising from a special case of the hydrodynamic model of traffic flow. The proposed method automatically generates appropriate changes in density at locations where the hydrodynamic theory would call for a shockwave; i.e., a jump in density such as those typically seen at the end of every queue. The complex side calculations required by classical methods to keep track of shockwaves are thus eliminated. The paper also shows how the equations can mimic the real-life development of stop-and-go traffic within moving queues.

Suggested Citation

  • Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
  • Handle: RePEc:eee:transb:v:28:y:1994:i:4:p:269-287

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:28:y:1994:i:4:p:269-287. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.