IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p12195-d672506.html
   My bibliography  Save this article

Forecasting Spatiotemporal Boundary of Emergency-Event-Based Traffic Congestion in Expressway Network Considering Highway Node Acceptance Capacity

Author

Listed:
  • Xingliang Liu

    (College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China)

  • Jian Wang

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Tangzhi Liu

    (College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China)

  • Jin Xu

    (College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China)

Abstract

Emergency events can induce serious traffic congestions in a local area which may propagate to the upstream roads, and even the whole network. Until now, the methodology forecasting spatiotemporal boundary propagation of emergency-event-based traffic congestions, with both explicitness and road network availability, has not been found. This study develops a new method for predicting spatiotemporal boundary of the congestion caused by emergency events, which is more applicable and practical than cell transmission model (CTM)-derived methods. This method divides the expressway network into different sections based on their functions and the shockwave direction caused by the emergency events. It characterizes the velocity of the moving congestion boundary based on kinetic wave theory and volume–density relationship. After determining whether the congestion will spread into the network level through an interchange using a new concept, highway node acceptance capacity (HNAC), we can predict the spatiotemporal boundary and corresponding traffic condition within the boundary. The proposed method is tested under four traffic incident cases with corresponding traffic data collected through field observations. We also compare its prediction performances with other methods used in the literature.

Suggested Citation

  • Xingliang Liu & Jian Wang & Tangzhi Liu & Jin Xu, 2021. "Forecasting Spatiotemporal Boundary of Emergency-Event-Based Traffic Congestion in Expressway Network Considering Highway Node Acceptance Capacity," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12195-:d:672506
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/12195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/12195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    2. Xingliang Liu & Jinliang Xu & Menghui Li & Leyu Wei & Han Ru, 2019. "General-Logistic-Based Speed-Density Relationship Model Incorporating the Effect of Heavy Vehicles," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-10, February.
    3. Harold Greenberg, 1959. "An Analysis of Traffic Flow," Operations Research, INFORMS, vol. 7(1), pages 79-85, February.
    4. Wu, Xinkai & Liu, Henry X., 2011. "A shockwave profile model for traffic flow on congested urban arterials," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1768-1786.
    5. Sakakibara, Takehito & Honda, Yasushi & Horiguchi, Tsuyoshi, 2000. "Effect of obstacles on formation of traffic jam in a two-dimensional traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 276(1), pages 316-337.
    6. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Continuous-time point-queue models in dynamic network loading," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 360-380.
    7. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 289-303, August.
    8. Leslie C. Edie, 1961. "Car-Following and Steady-State Theory for Noncongested Traffic," Operations Research, INFORMS, vol. 9(1), pages 66-76, February.
    9. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    10. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    11. Holland, Edward N. & Woods, Andrew W., 1997. "A continuum model for the dispersion of traffic on two-lane roads," Transportation Research Part B: Methodological, Elsevier, vol. 31(6), pages 473-485, November.
    12. Hao, Peng & Ban, Xuegang, 2015. "Long queue estimation for signalized intersections using mobile data," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 54-73.
    13. Nie, Xiaojian & Zhang, H.M., 2005. "Delay-function-based link models: their properties and computational issues," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 729-751, September.
    14. Fei, L. & Zhu, H.B. & Han, X.L., 2016. "Analysis of traffic congestion induced by the work zone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 497-505.
    15. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    16. Hao, Peng & Ban, Xuegang (Jeff) & Guo, Dong & Ji, Qiang, 2014. "Cycle-by-cycle intersection queue length distribution estimation using sample travel times," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 185-204.
    17. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    18. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    19. Wang, Haizhong & Li, Jia & Chen, Qian-Yong & Ni, Daiheng, 2011. "Logistic modeling of the equilibrium speed-density relationship," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 554-566, July.
    20. Comert, Gurcan & Cetin, Mecit, 2009. "Queue length estimation from probe vehicle location and the impacts of sample size," European Journal of Operational Research, Elsevier, vol. 197(1), pages 196-202, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shane Velan & Michael Florian, 2002. "A Note on the Entropy Solutions of the Hydrodynamic Model of Traffic Flow," Transportation Science, INFORMS, vol. 36(4), pages 435-446, November.
    2. Ma, Tao & Zhou, Zhou & Abdulhai, Baher, 2015. "Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 27-47.
    3. Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
    4. Wang, Peirong (Slade) & Li, Pengfei (Taylor) & Chowdhury, Farzana R. & Zhang, Li & Zhou, Xuesong, 2020. "A mixed integer programming formulation and scalable solution algorithms for traffic control coordination across multiple intersections based on vehicle space-time trajectories," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 266-304.
    5. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Continuous-time general link transmission model with simplified fanning, Part II: Event-based algorithm for networks," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 471-501.
    6. Helbing, Dirk & Hennecke, Ansgar & Shvetsov, Vladimir & Treiber, Martin, 2001. "MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 183-211, February.
    7. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    8. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    9. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    10. Canepa, Edward S. & Claudel, Christian G., 2017. "Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 686-709.
    11. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    12. Hao, Peng & Ban, Xuegang, 2015. "Long queue estimation for signalized intersections using mobile data," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 54-73.
    13. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    14. Wong, S. C. & Wong, G. C. K., 2002. "An analytical shock-fitting algorithm for LWR kinematic wave model embedded with linear speed-density relationship," Transportation Research Part B: Methodological, Elsevier, vol. 36(8), pages 683-706, September.
    15. Tumash, Liudmila & Canudas-de-Wit, Carlos & Delle Monache, Maria Laura, 2022. "Multi-directional continuous traffic model for large-scale urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 374-402.
    16. Michael Z. F. Li, 2008. "A Generic Characterization of Equilibrium Speed-Flow Curves," Transportation Science, INFORMS, vol. 42(2), pages 220-235, May.
    17. Niek Baer & Richard J. Boucherie & Jan-Kees C. W. van Ommeren, 2019. "Threshold Queueing to Describe the Fundamental Diagram of Uninterrupted Traffic," Transportation Science, INFORMS, vol. 53(2), pages 585-596, March.
    18. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    19. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    20. van der Gun, Jeroen P.T. & Pel, Adam J. & van Arem, Bart, 2017. "Extending the Link Transmission Model with non-triangular fundamental diagrams and capacity drops," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 154-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12195-:d:672506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.