IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v115y2018icp207-230.html
   My bibliography  Save this article

An informed user equilibrium dynamic traffic assignment problem in a multiple origin-destination stochastic network

Author

Listed:
  • Hoang, Nam H.
  • Vu, Hai L.
  • Lo, Hong K.

Abstract

We develop in this paper a comprehensive linear mathematical framework to study the benefit of real-time information and the impact of resulting user adaptive route choice behaviours on network performance. The framework formulates the information-based stochastic user equilibrium (ISUE) dynamic traffic assignment (DTA) problem for a multiple origin-destination (OD) network. Using the framework, we prove the linkage between the user equilibrium (UE) and system optimal (SO) solutions underpinned by the first-in-first-out (FIFO) principle. This important property then enables us to develop an incremental loading method to obtain the ISUE solutions efficiently by solving a sequence of linear programs. Moreover, the proposed method is more scalable that avoids a huge enumeration of paths in large-scale networks as done in path-based methods of the existing literature on this topic. We show via numerical examples the impact of information on both route choices and network performance, and demonstrate the significant improvements in the obtained ISUE solution both in terms of accuracy and computational complexity.

Suggested Citation

  • Hoang, Nam H. & Vu, Hai L. & Lo, Hong K., 2018. "An informed user equilibrium dynamic traffic assignment problem in a multiple origin-destination stochastic network," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 207-230.
  • Handle: RePEc:eee:transb:v:115:y:2018:i:c:p:207-230
    DOI: 10.1016/j.trb.2018.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517305829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamdouch, Younes & Szeto, W.Y. & Jiang, Y., 2014. "A new schedule-based transit assignment model with travel strategies and supply uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 35-67.
    2. Lam, William H.K. & Shao, Hu & Sumalee, Agachai, 2008. "Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 890-910, December.
    3. M Carey, 2009. "A framework for user equilibrium dynamic traffic assignment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 395-410, March.
    4. Avinash Unnikrishnan & Steven Waller, 2009. "User Equilibrium with Recourse," Networks and Spatial Economics, Springer, vol. 9(4), pages 575-593, December.
    5. Clark, Stephen & Watling, David, 2005. "Modelling network travel time reliability under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 119-140, February.
    6. Larsson, Torbjörn & Patriksson, Michael, 1999. "Side constrained traffic equilibrium models-- analysis, computation and applications," Transportation Research Part B: Methodological, Elsevier, vol. 33(4), pages 233-264, May.
    7. José R. Correa & Andreas S. Schulz & Nicolás E. Stier-Moses, 2004. "Selfish Routing in Capacitated Networks," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 961-976, November.
    8. Zhou, Xuesong & Mahmassani, Hani S., 2007. "A structural state space model for real-time traffic origin-destination demand estimation and prediction in a day-to-day learning framework," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 823-840, October.
    9. Malachy Carey & Y. Ge, 2012. "Comparison of Methods for Path Flow Reassignment for Dynamic User Equilibrium," Networks and Spatial Economics, Springer, vol. 12(3), pages 337-376, September.
    10. Lo, Hong K. & Szeto, W. Y., 2004. "Modeling advanced traveler information services: static versus dynamic paradigms," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 495-515, July.
    11. André de Palma & Robin Lindsey & Nathalie Picard, 2012. "Risk Aversion, the Value of Information, and Traffic Equilibrium," Transportation Science, INFORMS, vol. 46(1), pages 1-26, February.
    12. Shen, Wei & Zhang, H.M., 2014. "System optimal dynamic traffic assignment: Properties and solution procedures in the case of a many-to-one network," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 1-17.
    13. Tampère, Chris M.J. & Corthout, Ruben & Cattrysse, Dirk & Immers, Lambertus H., 2011. "A generic class of first order node models for dynamic macroscopic simulation of traffic flows," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 289-309, January.
    14. Qu, Xiaobo & Wang, Shuaian & Zhang, Jin, 2015. "On the fundamental diagram for freeway traffic: A novel calibration approach for single-regime models," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 91-102.
    15. Terry L. Friesz, 2010. "Dynamic Optimization and Differential Games," International Series in Operations Research and Management Science, Springer, number 978-0-387-72778-3, December.
    16. Yang, Yudi & Fan, Yueyue & Wets, Roger J.B., 2018. "Stochastic travel demand estimation: Improving network identifiability using multi-day observation sets," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 192-211.
    17. Carey, Malachy, 1992. "Nonconvexity of the dynamic traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 26(2), pages 127-133, April.
    18. Gao, Song & Chabini, Ismail, 2006. "Optimal routing policy problems in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 93-122, February.
    19. Han, Sangjin, 2003. "Dynamic traffic modelling and dynamic stochastic user equilibrium assignment for general road networks," Transportation Research Part B: Methodological, Elsevier, vol. 37(3), pages 225-249, March.
    20. Bifulco, Gennaro N. & Cantarella, Giulio E. & Simonelli, Fulvio & Velonà, Pietro, 2016. "Advanced traveller information systems under recurrent traffic conditions: Network equilibrium and stability," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 73-87.
    21. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    22. S. Waller & David Fajardo & Melissa Duell & Vinayak Dixit, 2013. "Linear Programming Formulation for Strategic Dynamic Traffic Assignment," Networks and Spatial Economics, Springer, vol. 13(4), pages 427-443, December.
    23. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.
    24. Lin, Wei-Hua & Lo, Hong K., 2000. "Are the objective and solutions of dynamic user-equilibrium models always consistent?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(2), pages 137-144, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Manzi & Jiang, Gege & Lo, Hong K., 2022. "Pricing strategy of ride-sourcing services under travel time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoang, Nam H. & Vu, Hai L. & Panda, Manoj & Lo, Hong K., 2019. "A linear framework for dynamic user equilibrium traffic assignment in a single origin-destination capacitated network," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 329-352.
    2. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.
    3. Michael W. Levin & Melissa Duell & S. Travis Waller, 2020. "Arrival Time Reliability in Strategic User Equilibrium," Networks and Spatial Economics, Springer, vol. 20(3), pages 803-831, September.
    4. S. Waller & David Fajardo & Melissa Duell & Vinayak Dixit, 2013. "Linear Programming Formulation for Strategic Dynamic Traffic Assignment," Networks and Spatial Economics, Springer, vol. 13(4), pages 427-443, December.
    5. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    6. Jiancheng Long & Wai Yuen Szeto, 2019. "Link-Based System Optimum Dynamic Traffic Assignment Problems in General Networks," Operations Research, INFORMS, vol. 67(1), pages 167-182, January.
    7. N. Nezamuddin & Stephen Boyles, 2015. "A Continuous DUE Algorithm Using the Link Transmission Model," Networks and Spatial Economics, Springer, vol. 15(3), pages 465-483, September.
    8. Kucharski, Rafał & Gentile, Guido, 2019. "Simulation of rerouting phenomena in Dynamic Traffic Assignment with the Information Comply Model," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 414-441.
    9. Satsukawa, Koki & Wada, Kentaro & Watling, David, 2022. "Dynamic system optimal traffic assignment with atomic users: Convergence and stability," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 188-209.
    10. Crawford, F. & Watling, D.P. & Connors, R.D., 2017. "A statistical method for estimating predictable differences between daily traffic flow profiles," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 196-213.
    11. Long, Jiancheng & Szeto, W.Y. & Du, Jie & Wong, R.C.P., 2017. "A dynamic taxi traffic assignment model: A two-level continuum transportation system approach," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 222-254.
    12. Long, Jiancheng & Wang, Chao & Szeto, W.Y., 2018. "Dynamic system optimum simultaneous route and departure time choice problems: Intersection-movement-based formulations and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 166-206.
    13. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    14. ManWo Ng & Hong Lo, 2013. "Regional Air Quality Conformity in Transportation Networks with Stochastic Dependencies: A Theoretical Copula-Based Model," Networks and Spatial Economics, Springer, vol. 13(4), pages 373-397, December.
    15. Brederode, Luuk & Pel, Adam & Wismans, Luc & Rijksen, Bernike & Hoogendoorn, Serge, 2023. "Travel demand matrix estimation for strategic road traffic assignment models with strict capacity constraints and residual queues," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 1-31.
    16. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    17. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    18. Stephen Boyles & S. Waller, 2011. "Optimal Information Location for Adaptive Routing," Networks and Spatial Economics, Springer, vol. 11(2), pages 233-254, June.
    19. Long, Jiancheng & Szeto, W.Y. & Gao, Ziyou & Huang, Hai-Jun & Shi, Qin, 2016. "The nonlinear equation system approach to solving dynamic user optimal simultaneous route and departure time choice problems," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 179-206.
    20. Paolo Delle Site, 2017. "On the Equivalence Between SUE and Fixed-Point States of Day-to-Day Assignment Processes with Serially-Correlated Route Choice," Networks and Spatial Economics, Springer, vol. 17(3), pages 935-962, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:115:y:2018:i:c:p:207-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.