IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v95y2017icp196-213.html
   My bibliography  Save this article

A statistical method for estimating predictable differences between daily traffic flow profiles

Author

Listed:
  • Crawford, F.
  • Watling, D.P.
  • Connors, R.D.

Abstract

It is well known that traffic flows in road networks may vary not only within the day but also between days. Existing models including day-to-day variability usually represent all variability as unpredictable fluctuations. In reality, however, some of the differences in flows on a road may be predictable for transport planners with access to historical data. For example, flow profiles may be systematically different on Mondays compared to Fridays due to predictable differences in underlying activity patterns. By identifying days of the week or times of year where flows are predictably different, models can be developed or model inputs can be amended (in the case of day-to-day dynamical models) to test the robustness of proposed policies or to inform the development of policies which vary according to these predictably different day types. Such policies could include time-of-day varying congestion charges that themselves vary by day of the week or season, or targeting public transport provision so that timetables are more responsive to the day of the week and seasonal needs of travellers. A statistical approach is presented for identifying systematic variations in daily traffic flow profiles based on known explanatory factors such as the day of the week and the season. In order to examine day-to-day variability whilst also considering within-day dynamics, the distribution of flows throughout a day are analysed using Functional Linear Models. F-type tests for functional data are then used to compare alternative model specifications for the predictable variability. The output of the method is an average flow profile for each predictably different day type, which could include day of the week or time of year. An application to real-life traffic flow data for a two-year period is provided. The shape of the daily profile was found to be significantly different for each day of the week, including differences in the timing and width of peak flows and also the relationship between peak and inter-peak flows. Seasonal differences in flow profiles were also identified for each day of the week.

Suggested Citation

  • Crawford, F. & Watling, D.P. & Connors, R.D., 2017. "A statistical method for estimating predictable differences between daily traffic flow profiles," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 196-213.
  • Handle: RePEc:eee:transb:v:95:y:2017:i:c:p:196-213
    DOI: 10.1016/j.trb.2016.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516300856
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hazelton, Martin L. & Parry, Katharina, 2016. "Statistical methods for comparison of day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 22-34.
    2. Lam, William H.K. & Shao, Hu & Sumalee, Agachai, 2008. "Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 890-910, December.
    3. Livio Corain & Viatcheslav Melas & Andrey Pepelyshev & Luigi Salmaso, 2014. "New insights on permutation approach for hypothesis testing on functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 339-356, September.
    4. Long, Jiancheng & Szeto, W.Y. & Gao, Ziyou & Huang, Hai-Jun & Shi, Qin, 2016. "The nonlinear equation system approach to solving dynamic user optimal simultaneous route and departure time choice problems," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 179-206.
    5. Nurul Habib, Khandker M. & Day, Nicholas & Miller, Eric J., 2009. "An investigation of commuting trip timing and mode choice in the Greater Toronto Area: Application of a joint discrete-continuous model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(7), pages 639-653, August.
    6. Guo, Ren-Yong & Yang, Hai & Huang, Hai-Jun & Tan, Zhijia, 2015. "Link-based day-to-day network traffic dynamics and equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 248-260.
    7. Wang, David Z.W. & Du, Bo, 2016. "Continuum modelling of spatial and dynamic equilibrium in a travel corridor with heterogeneous commuters—A partial differential complementarity system approach," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 1-18.
    8. Robert Schlich & Kay Axhausen, 2003. "Habitual travel behaviour: Evidence from a six-week travel diary," Transportation, Springer, vol. 30(1), pages 13-36, February.
    9. Nakayama, Shoichiro & Watling, David, 2014. "Consistent formulation of network equilibrium with stochastic flows," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 50-69.
    10. Yang, Hai & Ye, Hongbo, 2016. "Physics of day-to-day network flow dynamicsAuthor-Name: Xiao, Feng," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 86-103.
    11. Khandker Habib & Eric Miller, 2008. "Modelling daily activity program generation considering within-day and day-to-day dynamics in activity-travel behaviour," Transportation, Springer, vol. 35(4), pages 467-484, July.
    12. Hu Shao & William Lam & Mei Tam, 2006. "A Reliability-Based Stochastic Traffic Assignment Model for Network with Multiple User Classes under Uncertainty in Demand," Networks and Spatial Economics, Springer, vol. 6(3), pages 173-204, September.
    13. Tang, Jinjun & Wang, Yinhai & Wang, Hua & Zhang, Shen & Liu, Fang, 2014. "Dynamic analysis of traffic time series at different temporal scales: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 303-315.
    14. Clark, Stephen & Watling, David, 2005. "Modelling network travel time reliability under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 119-140, February.
    15. Kumar, Amit & Peeta, Srinivas, 2015. "A day-to-day dynamical model for the evolution of path flows under disequilibrium of traffic networks with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 235-256.
    16. Ukkusuri, Satish V. & Han, Lanshan & Doan, Kien, 2012. "Dynamic user equilibrium with a path based cell transmission model for general traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1657-1684.
    17. Han, Ke & Friesz, Terry L. & Szeto, W.Y. & Liu, Hongcheng, 2015. "Elastic demand dynamic network user equilibrium: Formulation, existence and computation," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 183-209.
    18. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Zhang, Mengping, 2015. "Reformulating the Hoogendoorn–Bovy predictive dynamic user-optimal model in continuum space with anisotropic condition," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 189-217.
    19. David Watling, 2002. "A Second Order Stochastic Network Equilibrium Model, II: Solution Method and Numerical Experiments," Transportation Science, INFORMS, vol. 36(2), pages 167-183, May.
    20. Siu, Barbara W.Y. & Lo, Hong K., 2008. "Doubly uncertain transportation network: Degradable capacity and stochastic demand," European Journal of Operational Research, Elsevier, vol. 191(1), pages 166-181, November.
    21. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
    22. Mingotti, Nicola & Lillo Rodríguez, Rosa Elvira & Romo Urroz, Juan, 2013. "Lasso variable selection in functional regression," DES - Working Papers. Statistics and Econometrics. WS ws131413, Universidad Carlos III de Madrid. Departamento de Estadística.
    23. Matsui, Hidetoshi & Konishi, Sadanori, 2011. "Variable selection for functional regression models via the L1 regularization," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3304-3310, December.
    24. Tomasz Górecki & Łukasz Smaga, 2015. "A comparison of tests for the one-way ANOVA problem for functional data," Computational Statistics, Springer, vol. 30(4), pages 987-1010, December.
    25. Guardiola, I.G. & Leon, T. & Mallor, F., 2014. "A functional approach to monitor and recognize patterns of daily traffic profiles," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 119-136.
    26. David Watling, 2002. "A Second Order Stochastic Network Equilibrium Model, I: Theoretical Foundation," Transportation Science, INFORMS, vol. 36(2), pages 149-166, May.
    27. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    28. Lo, Hong K. & Tung, Yeou-Koung, 2003. "Network with degradable links: capacity analysis and design," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 345-363, May.
    29. Nerini, David & Ghattas, Badih, 2007. "Classifying densities using functional regression trees: Applications in oceanology," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4984-4993, June.
    30. Sumalee, A. & Zhong, R.X. & Pan, T.L. & Szeto, W.Y., 2011. "Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 507-533, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crawford, F. & Watling, D.P. & Connors, R.D., 2018. "Identifying road user classes based on repeated trip behaviour using Bluetooth data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 55-74.
    2. Milne, Dave & Watling, David, 2019. "Big data and understanding change in the context of planning transport systems," Journal of Transport Geography, Elsevier, vol. 76(C), pages 235-244.
    3. Zang, Zhaoqi & Xu, Xiangdong & Yang, Chao & Chen, Anthony, 2018. "A closed-form estimation of the travel time percentile function for characterizing travel time reliability," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 228-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:95:y:2017:i:c:p:196-213. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.