IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v150y2021icp353-369.html
   My bibliography  Save this article

Directional assessment of traffic flow extremes

Author

Listed:
  • Osipenko, Maria

Abstract

We analyze extremes of traffic flow profiles composed of traffic counts over a day. The data is essentially curves and determining which trajectory should be classified as extreme is not straight forward. To assess the extremes of the traffic flow curves in a coherent way, we use a directional definition of extremeness and apply the dimension reduction technique called principal component analysis (PCA) in an asymmetric norm. In the classical PCA one reduces the dimensions of the data by projecting it in the direction of the largest variation of the projection around its mean. In the PCA in an asymmetric norm one chooses the projection directions, such that the asymmetrically weighted variation around a tail index – an expectile – of the data is the largest possible. Expectiles are tail measures that generalize the mean in a similar manner as quantiles generalize the median. Focusing on the asymmetrically weighted variation around an expectile of the data, we find the appropriate projection directions and the low dimensional representation of the traffic flow profiles that uncover different patterns in their extremes. Using the traffic flow data from the roundabout on Ernst-Reuter-Platz in the city center of Berlin, Germany, we estimate, visualize and interpret the resulting principal expectile components. The corresponding directional extremes of the traffic flow profiles are simple to identify and to connect to their location- and time-related specifics. Their shapes are driven by their scores on each principal expectile component which is useful for extracting and analyzing traffic patterns. We utilize the double cross-validation for determining the optimal component number and forecast traffic flow profiles based on the estimated model. Our approach to dimensionality reduction towards the directional extremes of traffic flow extends the related methodological basis and gives promising results for subsequent analysis, prediction and control of the reflected patterns.

Suggested Citation

  • Osipenko, Maria, 2021. "Directional assessment of traffic flow extremes," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 353-369.
  • Handle: RePEc:eee:transb:v:150:y:2021:i:c:p:353-369
    DOI: 10.1016/j.trb.2021.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S019126152100117X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2021.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sabine K. Schnabel & Paul Eilers, 2009. "An analysis of life expectancy and economic production using expectile frontier zones," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 21(5), pages 109-134.
    2. Philip Kokic & Ray Chambers & Steve Beare, 2000. "Microsimulation of Business Performance," International Statistical Review, International Statistical Institute, vol. 68(3), pages 259-275, December.
    3. Crawford, F. & Watling, D.P. & Connors, R.D., 2017. "A statistical method for estimating predictable differences between daily traffic flow profiles," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 196-213.
    4. Li, Baibing, 2019. "Measuring travel time reliability and risk: A nonparametric approach," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 152-171.
    5. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    6. Montes-Rojas, Gabriel, 2017. "Reduced form vector directional quantiles," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 20-30.
    7. Tran, Ngoc M. & Burdejová, Petra & Ospienko, Maria & Härdle, Wolfgang K., 2019. "Principal component analysis in an asymmetric norm," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 1-21.
    8. Ying Song & Harvey Miller, 2012. "Exploring traffic flow databases using space-time plots and data cubes," Transportation, Springer, vol. 39(2), pages 215-234, March.
    9. Guardiola, I.G. & Leon, T. & Mallor, F., 2014. "A functional approach to monitor and recognize patterns of daily traffic profiles," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 119-136.
    10. Zang, Zhaoqi & Xu, Xiangdong & Yang, Chao & Chen, Anthony, 2018. "A closed-form estimation of the travel time percentile function for characterizing travel time reliability," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 228-247.
    11. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    12. Zhong, R.X. & Xie, X.X. & Luo, J.C. & Pan, T.L. & Lam, W.H.K. & Sumalee, A., 2020. "Modeling double time-scale travel time processes with application to assessing the resilience of transportation systems," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 228-248.
    13. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    14. Hubert, Mia & Rousseeuw, Peter & Verdonck, Tim, 2009. "Robust PCA for skewed data and its outlier map," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2264-2274, April.
    15. Kristoffer Herland Hellton & Magne Thoresen, 2014. "The Impact of Measurement Error on Principal Component Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1051-1063, December.
    16. Coogan, Samuel & Flores, Christopher & Varaiya, Pravin, 2017. "Traffic predictive control from low-rank structure," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 1-22.
    17. Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
    18. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    19. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan Stahlschmidt & Matthias Eckardt & Wolfgang K. Härdle, 2014. "Expectile Treatment Effects: An efficient alternative to compute the distribution of treatment effects," SFB 649 Discussion Papers SFB649DP2014-059, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    3. Farooq, Muhammad & Steinwart, Ingo, 2017. "An SVM-like approach for expectile regression," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 159-181.
    4. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Ozdemir, Huseyin & Wohar, Mark E., 2020. "Transmission of US and EU Economic Policy Uncertainty Shock to Asian Economies in Bad and Good Times," IZA Discussion Papers 13274, Institute of Labor Economics (IZA).
    5. Shih-Kang Chao & Wolfgang K. Härdle & Chen Huang, 2016. "Multivariate Factorisable Sparse Asymmetric Least Squares Regression," SFB 649 Discussion Papers SFB649DP2016-058, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. María Edo & Walter Sosa Escudero & Marcela Svarc, 2021. "A multidimensional approach to measuring the middle class," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(1), pages 139-162, March.
    7. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    8. V. Maume-Deschamps & D. Rullière & A. Usseglio-Carleve, 2018. "Spatial Expectile Predictions for Elliptical Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 643-671, June.
    9. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2023. "Extreme expectile estimation for short-tailed data, with an application to market risk assessment," TSE Working Papers 23-1414, Toulouse School of Economics (TSE).
    10. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2021. "ExpectHill estimation, extreme risk and heavy tails," Journal of Econometrics, Elsevier, vol. 221(1), pages 97-117.
    11. Tu, Yundong & Wang, Siwei, 2020. "Jackknife model averaging for expectile regressions in increasing dimension," Economics Letters, Elsevier, vol. 197(C).
    12. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    13. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    14. C. Adam & I. Gijbels, 2022. "Local polynomial expectile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 341-378, April.
    15. Girard, Stéphane & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Functional estimation of extreme conditional expectiles," Econometrics and Statistics, Elsevier, vol. 21(C), pages 131-158.
    16. Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
    17. Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "K-expectiles clustering," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    19. Stéphane Girard & Gilles Stupfler & Antoine Usseglio‐Carleve, 2022. "Nonparametric extreme conditional expectile estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 78-115, March.
    20. Brenda López Cabrera & Franziska Schulz, 2017. "Forecasting Generalized Quantiles of Electricity Demand: A Functional Data Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 127-136, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:150:y:2021:i:c:p:353-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.