IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2016-040.html

Principal component analysis in an asymmetric norm

Author

Listed:
  • Tran, Ngoc Mai
  • Burdejová, Petra
  • Osipenko, Maria
  • Härdle, Wolfgang Karl

Abstract

Principal component analysis (PCA) is a widely used dimension reduction tool in the analysis of high-dimensional data. However, in many applications such as risk quantification in finance or climatology, one is interested in capturing the tail variations rather than variation around the mean. In this paper, we develop Principal Expectile Analysis (PEC), which generalizes PCA for expectiles. It can be seen as a dimension reduction tool for extreme value theory, where one approximates uctuations in the expectile level of the data by a low dimensional subspace. We provide algorithms based on iterative least squares, prove upper bounds on their convergence times, and compare their performances in a simulation study. We apply the algorithms to a Chinese weather dataset and fMRI data from an investment decision study.

Suggested Citation

  • Tran, Ngoc Mai & Burdejová, Petra & Osipenko, Maria & Härdle, Wolfgang Karl, 2016. "Principal component analysis in an asymmetric norm," SFB 649 Discussion Papers 2016-040, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2016-040
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/148876/1/871011107.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gao, Yafeng & Xu, Jiangmin & Yang, Shichao & Tang, Xiaomin & Zhou, Quan & Ge, Jing & Xu, Tengfang & Levinson, Ronnen, 2014. "Cool roofs in China: Policy review, building simulations, and proof-of-concept experiments," Energy Policy, Elsevier, vol. 74(C), pages 190-214.
    2. Kuan, Chung-Ming & Yeh, Jin-Huei & Hsu, Yu-Chin, 2009. "Assessing value at risk with CARE, the Conditional Autoregressive Expectile models," Journal of Econometrics, Elsevier, vol. 150(2), pages 261-270, June.
    3. Kehui Chen & Hans‐Georg Müller, 2012. "Conditional quantile analysis when covariates are functions, with application to growth data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(1), pages 67-89, January.
    4. Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
    5. Šaltytė Benth, Jūratė & Benth, Fred Espen, 2012. "A critical view on temperature modelling for application in weather derivatives markets," Energy Economics, Elsevier, vol. 34(2), pages 592-602.
    6. Burdejova, P. & Härdle, W. & Kokoszka, P. & Xiong, Q., 2017. "Change point and trend analyses of annual expectile curves of tropical storms," Econometrics and Statistics, Elsevier, vol. 1(C), pages 101-117.
    7. Zhang, Lingsong & Lu, Shu & Marron, J.S., 2015. "Nested nonnegative cone analysis," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 100-110.
    8. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    9. Philippe Jorion, 2000. "Risk management lessons from Long‐Term Capital Management," European Financial Management, European Financial Management Association, vol. 6(3), pages 277-300, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana C S Costa & Diego E Pereira & Caio M Veríssimo & Marcos A D Bomfim & Rita C R E Queiroga & Marta S Madruga & Susana Alves & Rui J B Bessa & Maria E G Oliveira & Juliana K B Soares, 2019. "Developing cookies formulated with goat cream enriched with conjugated linoleic acid," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-15, September.
    2. Osipenko, Maria, 2021. "Directional assessment of traffic flow extremes," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 353-369.
    3. repec:hum:wpaper:sfb649dp2017-027 is not listed on IDEAS
    4. Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "K-expectiles clustering," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. repec:hum:wpaper:sfb649dp2016-058 is not listed on IDEAS
    6. Lin, Liang-Ching & Chen, Ray-Bing & Huang, Mong-Na Lo & Guo, Meihui, 2020. "Huber-type principal expectile component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2016-040 is not listed on IDEAS
    2. repec:hum:wpaper:sfb649dp2014-001 is not listed on IDEAS
    3. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    4. repec:hum:wpaper:sfb649dp2017-027 is not listed on IDEAS
    5. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    6. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    7. Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).
    8. Daouia, Abdelaati & Paindaveine, Davy, 2019. "Multivariate Expectiles, Expectile Depth and Multiple-Output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE), revised Feb 2023.
    9. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    10. Mustapha Mohammedi & Salim Bouzebda & Ali Laksaci, 2025. "Asymptotic results of the randomly censored kernel-type expectile regression estimator for functional dependent data," Statistical Inference for Stochastic Processes, Springer, vol. 28(2), pages 1-39, August.
    11. Daouia, Abdelaati & Padoan, Simone A. & Stupfler, Gilles, 2024. "Extreme expectile estimation for short-tailed data," Journal of Econometrics, Elsevier, vol. 241(2).
    12. Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021. "The time-varying risk of Italian GDP," Economic Modelling, Elsevier, vol. 101(C).
    13. repec:dau:papers:123456789/15232 is not listed on IDEAS
    14. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2018. "Tail expectile process and risk assessment," TSE Working Papers 18-944, Toulouse School of Economics (TSE).
    15. Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "K-expectiles clustering," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Lina Liao & Cheolwoo Park & Hosik Choi, 2019. "Penalized expectile regression: an alternative to penalized quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 409-438, April.
    17. Ren, Rui & Lu, Meng-Jou & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "Financial Risk Meter FRM based on Expectiles," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Johanna F. Ziegel, 2013. "Coherence and elicitability," Papers 1303.1690, arXiv.org, revised Mar 2014.
    19. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    20. Zhang, Feipeng & Li, Qunhua, 2017. "A continuous threshold expectile model," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 49-66.
    21. Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    22. Zongxia Liang & Jianming Xia & Keyu Zhang, 2023. "Equilibrium stochastic control with implicitly defined objective functions," Papers 2312.15173, arXiv.org, revised Dec 2023.
    23. Abdelaati Daouia & Stéphane Girard & Gilles Stupfler, 2018. "Estimation of tail risk based on extreme expectiles," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 263-292, March.
    24. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2016-040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.