IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws131413.html
   My bibliography  Save this paper

Lasso variable selection in functional regression

Author

Listed:
  • Mingotti, Nicola
  • Lillo Rodríguez, Rosa Elvira
  • Romo, Juan

Abstract

Functional Regression has been an active subject of research in the last two decades but still lacks a secure variable selection methodology. Lasso is a well known effective technique for parameters shrinkage and variable selection in regression problems. In this work we generalize the Lasso technique to select variables in the functional regression framework and show it performs well. In particular, we focus on the case of functional regression with scalar regressors and functional response. Reduce the associated functional optimization problem to a convex optimization on scalars. Find its solutions and stress their interpretability. We apply the technique to simulated data sets as well as to a new real data set: car velocity functions in low speed car accidents, a frequent cause of whiplash injuries. By “Functional Lasso” we discover which car characteristics influence more car speed and which can be considered not relevant

Suggested Citation

  • Mingotti, Nicola & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2013. "Lasso variable selection in functional regression," DES - Working Papers. Statistics and Econometrics. WS ws131413, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws131413
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/c5621dc9-0718-4f7b-aafd-ec0621aff92b/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
    2. Matsui, Hidetoshi & Konishi, Sadanori, 2011. "Variable selection for functional regression models via the L1 regularization," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3304-3310, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crawford, F. & Watling, D.P. & Connors, R.D., 2017. "A statistical method for estimating predictable differences between daily traffic flow profiles," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 196-213.
    2. Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
    4. Collazos, Julian A.A. & Dias, Ronaldo & Zambom, Adriano Z., 2016. "Consistent variable selection for functional regression models," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 63-71.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirosław Krzyśko & Łukasz Smaga, 2017. "An Application Of Functional Multivariate Regression Model To Multiclass Classification," Statistics in Transition New Series, Polish Statistical Association, vol. 18(3), pages 433-442, September.
    2. Huang, Lele & Zhao, Junlong & Wang, Huiwen & Wang, Siyang, 2016. "Robust shrinkage estimation and selection for functional multiple linear model through LAD loss," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 384-400.
    3. Yin, Xu & Wang, Jing & Li, Yurui & Feng, Zhiming & Wang, Qianyi, 2021. "Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China," Land Use Policy, Elsevier, vol. 109(C).
    4. Joseph, Esdras & Galeano San Miguel, Pedro & Lillo Rodríguez, Rosa Elvira, 2015. "Two-sample Hotelling's T² statistics based on the functional Mahalanobis semi-distance," DES - Working Papers. Statistics and Econometrics. WS ws1503, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Flores Díaz, Ramón Jesús & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2014. "Homogeneity test for functional data based on depth measures," DES - Working Papers. Statistics and Econometrics. WS ws140101, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    7. Jin-Ting Zhang & Xuehua Liang, 2014. "One-Way anova for Functional Data via Globalizing the Pointwise F-test," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 51-71, March.
    8. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    9. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    10. Věroslav Holuša & Michal Vaněk & Filip Beneš & Jiří Švub & Pavel Staša, 2023. "Virtual Reality as a Tool for Sustainable Training and Education of Employees in Industrial Enterprises," Sustainability, MDPI, vol. 15(17), pages 1-24, August.
    11. Mirshani, Ardalan & Reimherr, Matthew, 2021. "Adaptive function-on-scalar regression with a smoothing elastic net," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    12. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    13. Rafael Carvalho Ceregatti & Rafael Izbicki & Luis Ernesto Bueno Salasar, 2021. "WIKS: a general Bayesian nonparametric index for quantifying differences between two populations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 274-291, March.
    14. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    15. Ana Maria Aguilera & Francesca Fortuna & Manuel Escabias & Tonio Di Battista, 2021. "Assessing Social Interest in Burnout Using Google Trends Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 587-599, August.
    16. Tufan Öztürk, 2023. "A Comparison of Occupational Safety Perceptions among Domestic and Migrant Workers in Turkey," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    17. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    18. José C. Ponce-Bordón & David Lobo-Triviño & Ana Rubio-Morales & Roberto López del Campo & Ricardo Resta & Miguel A. López-Gajardo, 2022. "The Effect of the Video Assistant Referee System Implementation on Match Physical Demands in the Spanish LaLiga," IJERPH, MDPI, vol. 19(9), pages 1-7, April.
    19. Valencia García, Dalia Jazmin & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2013. "A Kendall correlation coefficient for functional dependence," DES - Working Papers. Statistics and Econometrics. WS ws133228, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Belli, Edoardo, 2022. "Smoothly adaptively centered ridge estimator," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    More about this item

    Keywords

    Norm one penalization;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws131413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.