IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A cell-based Merchant-Nemhauser model for the system optimum dynamic traffic assignment problem

  • Nie, Yu (Marco)
Registered author(s):

    A cell-based variant of the Merchant-Nemhauser (M-N) model is proposed for the system optimum (SO) dynamic traffic assignment (DTA) problem. Once linearized and augmented with additional constraints to capture cross-cell interactions, the model becomes a linear program that embeds a relaxed cell transmission model (CTM) to propagate traffic. As a result, we show that CTM-type traffic dynamics can be derived from the original M-N model, when the exit-flow function is properly selected and discretized. The proposed cell-based M-N model has a simple constraint structure and cell network representation because all intersections and cells are treated uniformly. Path marginal costs are defined using a recursive formula that involves a subset of multipliers from the linear program. This definition is then employed to interpret the necessary condition, which is a dynamic extension of the Wardrop's second principle. An algorithm is presented to solve the flow holding back problem that is known to exist in many discrete SO-DTA models. A numerical experiment is conducted to verify the proposed model and algorithm.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6V99-50NGNKP-1/2/599f477ccbc0f8f65f75c8abe334b0f8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Transportation Research Part B: Methodological.

    Volume (Year): 45 (2011)
    Issue (Month): 2 (February)
    Pages: 329-342

    as
    in new window

    Handle: RePEc:eee:transb:v:45:y:2011:i:2:p:329-342
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=548&ref=548_01_ooc_1&version=01

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Shen, Wei & Zhang, H.M., 2009. "On the morning commute problem in a corridor network with multiple bottlenecks: Its system-optimal traffic flow patterns and the realizing tolling scheme," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 267-284, March.
    2. Nie, Xiaojian & Zhang, H.M., 2005. "Delay-function-based link models: their properties and computational issues," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 729-751, September.
    3. Carey, Malachy, 1992. "Nonconvexity of the dynamic traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 26(2), pages 127-133, April.
    4. Ghali, M. O. & Smith, M. J., 1995. "A model for the dynamic system optimum traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 29(3), pages 155-170, June.
    5. Chiu, Yi-Chang & Zheng, Hong, 2007. "Real-time mobilization decisions for multi-priority emergency response resources and evacuation groups: Model formulation and solution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 710-736, November.
    6. Wie, Byung-Wook & Tobin, Roger L., 1998. "Dynamic congestion pricing models for general traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 32(5), pages 313-327, June.
    7. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    8. Shen, Wei & Zhang, H. Michael, 2009. "On the Morning Commute Problem in a Corridor Network with Multiple Bottlenecks: Its System-optimal Traffic Flow Patterns and the Realizing Tolling Scheme," Institute of Transportation Studies, Working Paper Series qt9bs815sq, Institute of Transportation Studies, UC Davis.
    9. Yang, Hai & Meng, Qiang, 1998. "Departure time, route choice and congestion toll in a queuing network with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 32(4), pages 247-260, May.
    10. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    11. Muñoz, Juan Carlos & Laval, Jorge A., 2006. "System optimum dynamic traffic assignment graphical solution method for a congested freeway and one destination," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 1-15, January.
    12. May, A. D. & Milne, D. S., 2000. "Effects of alternative road pricing systems on network performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(6), pages 407-436, August.
    13. Smith, M. J., 1993. "A new dynamic traffic model and the existence and calculation of dynamic user equilibria on congested capacity-constrained road networks," Transportation Research Part B: Methodological, Elsevier, vol. 27(1), pages 49-63, February.
    14. Carey, Malachy & Subrahmanian, Eswaran, 2000. "An approach to modelling time-varying flows on congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(3), pages 157-183, April.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:2:p:329-342. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.