IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v68y2008i2p211-233.html
   My bibliography  Save this article

Adjustable robust counterpart of conic quadratic problems

Author

Listed:
  • Odellia Boni
  • Aharon Ben-Tal

Abstract

This paper presents an approximate affinely adjustable robust counterpart for conic quadratic constraints. The theory is applied to obtain robust solutions to the problems of subway route design with implementation errors and a supply chain management with uncertain demands. Comparison of the adjustable solutions with the nominal and non-adjustable robust solutions shows that the adjustable (dynamic) robust solution maintains feasibility for all possible realizations, while being less conservative than the usual (static) robust counterpart solution. Copyright Springer-Verlag 2008

Suggested Citation

  • Odellia Boni & Aharon Ben-Tal, 2008. "Adjustable robust counterpart of conic quadratic problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(2), pages 211-233, October.
  • Handle: RePEc:spr:mathme:v:68:y:2008:i:2:p:211-233
    DOI: 10.1007/s00186-008-0218-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-008-0218-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-008-0218-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(1), pages 193-194, February.
    2. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(2), pages 541-545, April.
    3. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(4), pages 1007-1017, August.
    4. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    5. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1461-1465, December.
    6. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    7. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1273-1289, October.
    8. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(3), pages 819-821, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    2. Liu, Kun & Gao, Feng, 2017. "Scenario adjustable scheduling model with robust constraints for energy intensive corporate microgrid with wind power," Renewable Energy, Elsevier, vol. 113(C), pages 1-10.
    3. Nicolas Kämmerling & Jannis Kurtz, 2020. "Oracle-based algorithms for binary two-stage robust optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 539-569, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soleimanian, Azam & Salmani Jajaei, Ghasemali, 2013. "Robust nonlinear optimization with conic representable uncertainty set," European Journal of Operational Research, Elsevier, vol. 228(2), pages 337-344.
    2. Nikulin, Yury, 2006. "Robustness in combinatorial optimization and scheduling theory: An extended annotated bibliography," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 606, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    3. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.
    4. C. Gutiérrez & B. Jiménez & V. Novo, 2011. "A generic approach to approximate efficiency and applications to vector optimization with set-valued maps," Journal of Global Optimization, Springer, vol. 49(2), pages 313-342, February.
    5. Khondaker Mizanur Rahman & Marc Bremer, 2016. "Effective Corporate Governance and Financial Reporting in Japan," Asian Academy of Management Journal of Accounting and Finance (AAMJAF), Penerbit Universiti Sains Malaysia, vol. 12(Suppl. 1), pages 1-93–122.
    6. Elwyn Berlekamp & Richard M. Low, 2018. "Entrepreneurial Chess," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(2), pages 379-415, May.
    7. Luo, Fengqiao & Mehrotra, Sanjay, 2019. "Decomposition algorithm for distributionally robust optimization using Wasserstein metric with an application to a class of regression models," European Journal of Operational Research, Elsevier, vol. 278(1), pages 20-35.
    8. Garud N. Iyengar, 2005. "Robust Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 257-280, May.
    9. Areesh Mittal & Can Gokalp & Grani A. Hanasusanto, 2020. "Robust Quadratic Programming with Mixed-Integer Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 201-218, April.
    10. Ehsan Pourhadi & Reza Saadati & Sotiris K. Ntouyas, 2019. "Application of Fixed-Point Theory for a Nonlinear Fractional Three-Point Boundary-Value Problem," Mathematics, MDPI, vol. 7(6), pages 1-11, June.
    11. Kürşad Derinkuyu & Mustafa Pınar, 2006. "On the S-procedure and Some Variants," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 55-77, August.
    12. Ryoichi Nishimura & Shunsuke Hayashi & Masao Fukushima, 2013. "SDP reformulation for robust optimization problems based on nonconvex QP duality," Computational Optimization and Applications, Springer, vol. 55(1), pages 21-47, May.
    13. Moulay Rchid Sidi Ammi & Delfim F. M. Torres, 2013. "Existence of Three Positive Solutions to Some p -Laplacian Boundary Value Problems," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-12, February.
    14. Pavel V. Gapeev, 2006. "Perpetual Barrier Options in Jump-Diffusion Models," SFB 649 Discussion Papers SFB649DP2006-058, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    15. Ralf Werner, 2008. "Cascading: an adjusted exchange method for robust conic programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(2), pages 179-189, June.
    16. Roy Cerqueti, 2012. "Financing policies via stochastic control: a dynamic programming approach," Journal of Global Optimization, Springer, vol. 53(3), pages 539-561, July.
    17. Asghar, Muhammad Nadeem & Qureshi, Asad Sarwar & Ahmad, S. & Masih, I., 2004. "Root zone salinity management for sustaining crop production in saline groundwater areas," IWMI Books, Reports H036194, International Water Management Institute.
    18. Gülpınar, Nalân & Çanakoḡlu, Ethem, 2017. "Robust portfolio selection problem under temperature uncertainty," European Journal of Operational Research, Elsevier, vol. 256(2), pages 500-523.
    19. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    20. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:68:y:2008:i:2:p:211-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.