IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

How to solve a semi-infinite optimization problem

  • Stein, Oliver
Registered author(s):

    After an introduction to main ideas of semi-infinite optimization, this article surveys recent developments in theory and numerical methods for standard and generalized semi-infinite optimization problems. Particular attention is paid to connections with mathematical programs with complementarity constraints, lower level Wolfe duality, semi-smooth approaches, as well as branch and bound techniques in adaptive convexification procedures. A section on recent genericity results includes a discussion of the symmetry effect in generalized semi-infinite optimization.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171200464X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 223 (2012)
    Issue (Month): 2 ()
    Pages: 312-320

    as
    in new window

    Handle: RePEc:eee:ejores:v:223:y:2012:i:2:p:312-320
    Contact details of provider: Web page: http://www.elsevier.com/locate/eor

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Stein, Oliver & Still, Georg, 2002. "On generalized semi-infinite optimization and bilevel optimization," European Journal of Operational Research, Elsevier, vol. 142(3), pages 444-462, November.
    2. Winterfeld, Anton, 2008. "Application of general semi-infinite programming to lapidary cutting problems," European Journal of Operational Research, Elsevier, vol. 191(3), pages 838-854, December.
    3. Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
    4. Kanzi, N. & Nobakhtian, S., 2010. "Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 253-261, September.
    5. Still, G., 1999. "Generalized semi-infinite programming: Theory and methods," European Journal of Operational Research, Elsevier, vol. 119(2), pages 301-313, December.
    6. Ralf Werner, 2008. "Cascading: an adjusted exchange method for robust conic programming," Central European Journal of Operations Research, Springer, vol. 16(2), pages 179-189, June.
    7. Gerhard-Wilhelm Weber & Aysun Tezel, 2007. "On generalized semi-infinite optimization of genetic networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 15(1), pages 65-77, July.
    8. Harald Günzel & Hubertus Jongen & Oliver Stein, 2007. "On the closure of the feasible set in generalized semi-infinite programming," Central European Journal of Operations Research, Springer, vol. 15(3), pages 271-280, September.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:2:p:312-320. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.