IDEAS home Printed from
   My bibliography  Save this article

On the closure of the feasible set in generalized semi-infinite programming


  • Harald Günzel
  • Hubertus Jongen
  • Oliver Stein



In generalized semi-infinite programming the feasible set is known to be not closed in general. In this paper, under natural and generic assumptions, the closure of the feasible set is described in explicit terms. Copyright Springer-Verlag 2007

Suggested Citation

  • Harald Günzel & Hubertus Jongen & Oliver Stein, 2007. "On the closure of the feasible set in generalized semi-infinite programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 15(3), pages 271-280, September.
  • Handle: RePEc:spr:cejnor:v:15:y:2007:i:3:p:271-280
    DOI: 10.1007/s10100-007-0030-2

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:spr:mathme:v:86:y:2017:i:1:d:10.1007_s00186-017-0591-3 is not listed on IDEAS
    2. Alexander Mitsos & Angelos Tsoukalas, 2015. "Global optimization of generalized semi-infinite programs via restriction of the right hand side," Journal of Global Optimization, Springer, vol. 61(1), pages 1-17, January.
    3. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    4. M. Beatrice Lignola & Jacqueline Morgan, 2017. "Inner Regularizations and Viscosity Solutions for Pessimistic Bilevel Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 183-202, April.
    5. M. Diehl & B. Houska & O. Stein & P. Steuermann, 2013. "A lifting method for generalized semi-infinite programs based on lower level Wolfe duality," Computational Optimization and Applications, Springer, vol. 54(1), pages 189-210, January.

    More about this item


    Semi-infinite programming; Feasible set; Projection; Genericity; 90C34; 90C46; 90C31; 90C47;

    JEL classification:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:15:y:2007:i:3:p:271-280. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.