IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v54y2013i1p189-210.html
   My bibliography  Save this article

A lifting method for generalized semi-infinite programs based on lower level Wolfe duality

Author

Listed:
  • M. Diehl

    ()

  • B. Houska

    ()

  • O. Stein

    ()

  • P. Steuermann

    ()

Abstract

This paper introduces novel numerical solution strategies for generalized semi-infinite optimization problems (GSIP), a class of mathematical optimization problems which occur naturally in the context of design centering problems, robust optimization problems, and many fields of engineering science. GSIPs can be regarded as bilevel optimization problems, where a parametric lower-level maximization problem has to be solved in order to check feasibility of the upper level minimization problem. The current paper discusses several strategies to reformulate this class of problems into equivalent finite minimization problems by exploiting the concept of Wolfe duality for convex lower level problems. Here, the main contribution is the discussion of the non-degeneracy of the corresponding formulations under various assumptions. Finally, these non-degenerate reformulations of the original GSIP allow us to apply standard nonlinear optimization algorithms. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • M. Diehl & B. Houska & O. Stein & P. Steuermann, 2013. "A lifting method for generalized semi-infinite programs based on lower level Wolfe duality," Computational Optimization and Applications, Springer, vol. 54(1), pages 189-210, January.
  • Handle: RePEc:spr:coopap:v:54:y:2013:i:1:p:189-210
    DOI: 10.1007/s10589-012-9489-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-012-9489-4
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harald Günzel & Hubertus Jongen & Oliver Stein, 2007. "On the closure of the feasible set in generalized semi-infinite programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 15(3), pages 271-280, September.
    2. Gerhard-Wilhelm Weber & Aysun Tezel, 2007. "On generalized semi-infinite optimization of genetic networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 65-77, July.
    3. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:mathme:v:86:y:2017:i:1:d:10.1007_s00186-017-0591-3 is not listed on IDEAS
    2. Volker Maag, 2015. "A collision detection approach for maximizing the material utilization," Computational Optimization and Applications, Springer, vol. 61(3), pages 761-781, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:54:y:2013:i:1:p:189-210. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.