IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A lifting method for generalized semi-infinite programs based on lower level Wolfe duality

  • M. Diehl

    ()

  • B. Houska

    ()

  • O. Stein

    ()

  • P. Steuermann

    ()

Registered author(s):

    This paper introduces novel numerical solution strategies for generalized semi-infinite optimization problems (GSIP), a class of mathematical optimization problems which occur naturally in the context of design centering problems, robust optimization problems, and many fields of engineering science. GSIPs can be regarded as bilevel optimization problems, where a parametric lower-level maximization problem has to be solved in order to check feasibility of the upper level minimization problem. The current paper discusses several strategies to reformulate this class of problems into equivalent finite minimization problems by exploiting the concept of Wolfe duality for convex lower level problems. Here, the main contribution is the discussion of the non-degeneracy of the corresponding formulations under various assumptions. Finally, these non-degenerate reformulations of the original GSIP allow us to apply standard nonlinear optimization algorithms. Copyright Springer Science+Business Media, LLC 2013

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s10589-012-9489-4
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Computational Optimization and Applications.

    Volume (Year): 54 (2013)
    Issue (Month): 1 (January)
    Pages: 189-210

    as
    in new window

    Handle: RePEc:spr:coopap:v:54:y:2013:i:1:p:189-210
    Contact details of provider: Web page: http://www.springer.com/math/journal/10589

    Order Information: Web: http://link.springer.de/orders.htm

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Harald G├╝nzel & Hubertus Jongen & Oliver Stein, 2007. "On the closure of the feasible set in generalized semi-infinite programming," Central European Journal of Operations Research, Springer, vol. 15(3), pages 271-280, September.
    2. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    3. Gerhard-Wilhelm Weber & Aysun Tezel, 2007. "On generalized semi-infinite optimization of genetic networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 15(1), pages 65-77, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:54:y:2013:i:1:p:189-210. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Christopher F Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.