IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v205y2010i2p253-261.html
   My bibliography  Save this article

Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems

Author

Listed:
  • Kanzi, N.
  • Nobakhtian, S.

Abstract

This paper is devoted to the study of nonsmooth generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be locally Lipschitz. We introduce a constraint qualification which is based on the Mordukhovich subdifferential. Then, we derive a Fritz-John type necessary optimality condition. Finally, interrelations between the new and the existing constraint qualifications such as the Mangasarian-Fromovitz, linear independent, and the Slater are investigated.

Suggested Citation

  • Kanzi, N. & Nobakhtian, S., 2010. "Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems," European Journal of Operational Research, Elsevier, vol. 205(2), pages 253-261, September.
  • Handle: RePEc:eee:ejores:v:205:y:2010:i:2:p:253-261
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00005-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Still, G., 1999. "Generalized semi-infinite programming: Theory and methods," European Journal of Operational Research, Elsevier, vol. 119(2), pages 301-313, December.
    2. Gerhard-Wilhelm Weber & Aysun Tezel, 2007. "On generalized semi-infinite optimization of genetic networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 65-77, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:apmaco:v:315:y:2017:i:c:p:381-399 is not listed on IDEAS
    2. repec:spr:mathme:v:86:y:2017:i:1:d:10.1007_s00186-017-0591-3 is not listed on IDEAS
    3. repec:spr:joptap:v:160:y:2014:i:3:d:10.1007_s10957-013-0314-8 is not listed on IDEAS
    4. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:205:y:2010:i:2:p:253-261. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.