IDEAS home Printed from
   My bibliography  Save this article

Solving air traffic conflict problems via local continuous optimization


  • Peyronne, Clément
  • Conn, Andrew R.
  • Mongeau, Marcel
  • Delahaye, Daniel


This paper first introduces an original trajectory model using B-splines and a new semi-infinite programming formulation of the separation constraint involved in air traffic conflict problems. A new continuous optimization formulation of the tactical conflict-resolution problem is then proposed. It involves very few optimization variables in that one needs only one optimization variable to determine each aircraft trajectory. Encouraging numerical experiments show that this approach is viable on realistic test problems. Not only does one not need to rely on the traditional, discretized, combinatorial optimization approaches to this problem, but, moreover, local continuous optimization methods, which require relatively fewer iterations and thereby fewer costly function evaluations, are shown to improve the performance of the overall global optimization of this non-convex problem.

Suggested Citation

  • Peyronne, Clément & Conn, Andrew R. & Mongeau, Marcel & Delahaye, Daniel, 2015. "Solving air traffic conflict problems via local continuous optimization," European Journal of Operational Research, Elsevier, vol. 241(2), pages 502-512.
  • Handle: RePEc:eee:ejores:v:241:y:2015:i:2:p:502-512
    DOI: 10.1016/j.ejor.2014.08.045

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Nourelhouda Dougui & Daniel Delahaye & Stéphane Puechmorel & Marcel Mongeau, 2013. "A light-propagation model for aircraft trajectory planning," Journal of Global Optimization, Springer, vol. 56(3), pages 873-895, July.
    2. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Antonio Alonso-Ayuso & Laureano F. Escudero & F. Javier Martín-Campo, 2016. "An exact multi-objective mixed integer nonlinear optimization approach for aircraft conflict resolution," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 381-408, July.
    2. Cafieri, Sonia & Omheni, Riadh, 2017. "Mixed-integer nonlinear programming for aircraft conflict avoidance by sequentially applying velocity and heading angle changes," European Journal of Operational Research, Elsevier, vol. 260(1), pages 283-290.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:241:y:2015:i:2:p:502-512. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.