IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Solving air traffic conflict problems via local continuous optimization

Listed author(s):
  • Peyronne, Clément
  • Conn, Andrew R.
  • Mongeau, Marcel
  • Delahaye, Daniel
Registered author(s):

    This paper first introduces an original trajectory model using B-splines and a new semi-infinite programming formulation of the separation constraint involved in air traffic conflict problems. A new continuous optimization formulation of the tactical conflict-resolution problem is then proposed. It involves very few optimization variables in that one needs only one optimization variable to determine each aircraft trajectory. Encouraging numerical experiments show that this approach is viable on realistic test problems. Not only does one not need to rely on the traditional, discretized, combinatorial optimization approaches to this problem, but, moreover, local continuous optimization methods, which require relatively fewer iterations and thereby fewer costly function evaluations, are shown to improve the performance of the overall global optimization of this non-convex problem.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 241 (2015)
    Issue (Month): 2 ()
    Pages: 502-512

    in new window

    Handle: RePEc:eee:ejores:v:241:y:2015:i:2:p:502-512
    DOI: 10.1016/j.ejor.2014.08.045
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Nourelhouda Dougui & Daniel Delahaye & Stéphane Puechmorel & Marcel Mongeau, 2013. "A light-propagation model for aircraft trajectory planning," Journal of Global Optimization, Springer, vol. 56(3), pages 873-895, July.
    2. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:241:y:2015:i:2:p:502-512. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.