IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v234y2014i3p751-762.html
   My bibliography  Save this article

Two-stage network constrained robust unit commitment problem

Author

Listed:
  • Jiang, Ruiwei
  • Zhang, Muhong
  • Li, Guang
  • Guan, Yongpei

Abstract

For a current deregulated power system, a large amount of operating reserve is often required to maintain the reliability of the power system using traditional approaches. In this paper, we propose a two-stage robust optimization model to address the network constrained unit commitment problem under uncertainty. In our approach, uncertain problem parameters are assumed to be within a given uncertainty set. We study cases with and without transmission capacity and ramp-rate limits (The latter case was described in Zhang and Guan (2009), for which the analysis part is included in Section 3 in this paper). We also analyze solution schemes to solve each problem that include an exact solution approach and an efficient heuristic approach that provides tight lower and upper bounds for the general network constrained robust unit commitment problem. The final computational experiments on an IEEE 118-bus system verify the effectiveness of our approaches, as compared to the nominal model without considering the uncertainty.

Suggested Citation

  • Jiang, Ruiwei & Zhang, Muhong & Li, Guang & Guan, Yongpei, 2014. "Two-stage network constrained robust unit commitment problem," European Journal of Operational Research, Elsevier, vol. 234(3), pages 751-762.
  • Handle: RePEc:eee:ejores:v:234:y:2014:i:3:p:751-762
    DOI: 10.1016/j.ejor.2013.09.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713007832
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rong, Aiying & Lahdelma, Risto, 2007. "Efficient algorithms for combined heat and power production planning under the deregulated electricity market," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1219-1245, January.
    2. Tao Yao & Supreet Mandala & Byung Chung, 2009. "Evacuation Transportation Planning Under Uncertainty: A Robust Optimization Approach," Networks and Spatial Economics, Springer, vol. 9(2), pages 171-189, June.
    3. Oliveira, P. & McKee, S. & Coles, C., 1993. "Optimal scheduling of a hydro thermal power generation system," European Journal of Operational Research, Elsevier, vol. 71(3), pages 334-340, December.
    4. Philpott, A. B. & Craddock, M. & Waterer, H., 2000. "Hydro-electric unit commitment subject to uncertain demand," European Journal of Operational Research, Elsevier, vol. 125(2), pages 410-424, September.
    5. Dang, Chuangyin & Li, Minqiang, 2007. "A floating-point genetic algorithm for solving the unit commitment problem," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1370-1395, September.
    6. Rong, Aiying & Hakonen, Henri & Lahdelma, Risto, 2008. "A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems," European Journal of Operational Research, Elsevier, vol. 190(3), pages 741-755, November.
    7. Guigues, Vincent & Sagastizábal, Claudia, 2012. "The value of rolling-horizon policies for risk-averse hydro-thermal planning," European Journal of Operational Research, Elsevier, vol. 217(1), pages 129-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frank, Stephen M. & Rebennack, Steffen, 2015. "Optimal design of mixed AC–DC distribution systems for commercial buildings: A Nonconvex Generalized Benders Decomposition approach," European Journal of Operational Research, Elsevier, vol. 242(3), pages 710-729.
    2. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    3. Shaoyun Hong & Haozhong Cheng & Pingliang Zeng, 2017. "An N - k Analytic Method of Composite Generation and Transmission with Interval Load," Energies, MDPI, Open Access Journal, vol. 10(2), pages 1-17, January.
    4. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2020. "A Primal–Dual Lifting Scheme for Two-Stage Robust Optimization," Operations Research, INFORMS, vol. 68(2), pages 572-590, March.
    5. Fan, Lei & Pan, Kai & Guan, Yongpei, 2019. "A strengthened mixed-integer linear programming formulation for combined-cycle units," European Journal of Operational Research, Elsevier, vol. 275(3), pages 865-881.
    6. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    7. Wenjuan Hou & Tao Fang & Zhi Pei & Qiao-Chu He, 2020. "Integrated Design of Unmanned Aerial Mobility Network: A Data-Driven Risk-Averse Approach," Papers 2004.13000, arXiv.org.
    8. Ruiz, C. & Conejo, A.J., 2015. "Robust transmission expansion planning," European Journal of Operational Research, Elsevier, vol. 242(2), pages 390-401.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:234:y:2014:i:3:p:751-762. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.