IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v210y2013i1p387-41010.1007-s10479-012-1092-7.html
   My bibliography  Save this article

A decomposition approach to the two-stage stochastic unit commitment problem

Author

Listed:
  • Qipeng Zheng
  • Jianhui Wang
  • Panos Pardalos
  • Yongpei Guan

Abstract

The unit commitment problem has been a very important problem in the power system operations, because it is aimed at reducing the power production cost by optimally scheduling the commitments of generation units. Meanwhile, it is a challenging problem because it involves a large amount of integer variables. With the increasing penetration of renewable energy sources in power systems, power system operations and control have been more affected by uncertainties than before. This paper discusses a stochastic unit commitment model which takes into account various uncertainties affecting thermal energy demand and two types of power generators, i.e., quick-start and non-quick-start generators. This problem is a stochastic mixed integer program with discrete decision variables in both first and second stages. In order to solve this difficult problem, a method based on Benders decomposition is applied. Numerical experiments show that the proposed algorithm can solve the stochastic unit commitment problem efficiently, especially those with large numbers of scenarios. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Qipeng Zheng & Jianhui Wang & Panos Pardalos & Yongpei Guan, 2013. "A decomposition approach to the two-stage stochastic unit commitment problem," Annals of Operations Research, Springer, vol. 210(1), pages 387-410, November.
  • Handle: RePEc:spr:annopr:v:210:y:2013:i:1:p:387-410:10.1007/s10479-012-1092-7
    DOI: 10.1007/s10479-012-1092-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1092-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1092-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ralf Gollmer & Matthias Nowak & Werner Römisch & Rüdiger Schultz, 2000. "Unit commitment in power generation – a basic model and some extensions," Annals of Operations Research, Springer, vol. 96(1), pages 167-189, November.
    2. Suvrajeet Sen & Lihua Yu & Talat Genc, 2006. "A Stochastic Programming Approach to Power Portfolio Optimization," Operations Research, INFORMS, vol. 54(1), pages 55-72, February.
    3. Cote, Gilles & Laughton, Michael A., 1984. "Large-scale mixed integer programming: Benders-type heuristics," European Journal of Operational Research, Elsevier, vol. 16(3), pages 327-333, June.
    4. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    5. Tuohy, Aidan & Meibom, Peter & Denny, Eleanor & O'Malley, Mark, 2009. "Unit commitment for systems with significant wind penetration," MPRA Paper 34849, University Library of Munich, Germany.
    6. Lewis Ntaimo, 2010. "Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse," Operations Research, INFORMS, vol. 58(1), pages 229-243, February.
    7. Walter Rei & Jean-François Cordeau & Michel Gendreau & Patrick Soriano, 2009. "Accelerating Benders Decomposition by Local Branching," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 333-345, May.
    8. Yongpei Guan & Shabbir Ahmed & George L. Nemhauser, 2009. "Cutting Planes for Multistage Stochastic Integer Programs," Operations Research, INFORMS, vol. 57(2), pages 287-298, April.
    9. Dale McDaniel & Mike Devine, 1977. "A Modified Benders' Partitioning Algorithm for Mixed Integer Programming," Management Science, INFORMS, vol. 24(3), pages 312-319, November.
    10. Qipeng P. Zheng & Panos M. Pardalos, 2010. "Stochastic and Risk Management Models and Solution Algorithm for Natural Gas Transmission Network Expansion and LNG Terminal Location Planning," Journal of Optimization Theory and Applications, Springer, vol. 147(2), pages 337-357, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Pan & Yongpei Guan, 2022. "Integrated Stochastic Optimal Self-Scheduling for Two-Settlement Electricity Markets," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1819-1840, May.
    2. Chao Li & Muhong Zhang & Kory Hedman, 2021. "Extreme Ray Feasibility Cuts for Unit Commitment with Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1037-1055, July.
    3. Zhouchun Huang & Qipeng P. Zheng & Andrew L. Liu, 2022. "A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1919-1939, July.
    4. Wim Ackooij & Jérôme Malick, 2016. "Decomposition algorithm for large-scale two-stage unit-commitment," Annals of Operations Research, Springer, vol. 238(1), pages 587-613, March.
    5. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    6. Emilia Grass & Kathrin Fischer & Antonia Rams, 2020. "An accelerated L-shaped method for solving two-stage stochastic programs in disaster management," Annals of Operations Research, Springer, vol. 284(2), pages 557-582, January.
    7. Schulze, Tim & McKinnon, Ken, 2016. "The value of stochastic programming in day-ahead and intra-day generation unit commitment," Energy, Elsevier, vol. 101(C), pages 592-605.
    8. Jianqiu Huang & Kai Pan & Yongpei Guan, 2021. "Multistage Stochastic Power Generation Scheduling Co-Optimizing Energy and Ancillary Services," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 352-369, January.
    9. Yin, S. & Wang, J. & Li, Z. & Fang, X., 2021. "State-of-the-art short-term electricity market operation with solar generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    11. Richard Li-Yang Chen & Neng Fan & Ali Pinar & Jean-Paul Watson, 2017. "Contingency-constrained unit commitment with post-contingency corrective recourse," Annals of Operations Research, Springer, vol. 249(1), pages 381-407, February.
    12. Atakan, Semih & Gangammanavar, Harsha & Sen, Suvrajeet, 2022. "Towards a sustainable power grid: Stochastic hierarchical planning for high renewable integration," European Journal of Operational Research, Elsevier, vol. 302(1), pages 381-391.
    13. Yonghan Feng & Sarah Ryan, 2016. "Solution sensitivity-based scenario reduction for stochastic unit commitment," Computational Management Science, Springer, vol. 13(1), pages 29-62, January.
    14. Wim Ackooij & Jérôme Malick, 2016. "Decomposition algorithm for large-scale two-stage unit-commitment," Annals of Operations Research, Springer, vol. 238(1), pages 587-613, March.
    15. Schulze, Tim & Grothey, Andreas & McKinnon, Ken, 2017. "A stabilised scenario decomposition algorithm applied to stochastic unit commitment problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 247-259.
    16. Iram Parvez & Jianjian Shen & Ishitaq Hassan & Nannan Zhang, 2021. "Generation of Hydro Energy by Using Data Mining Algorithm for Cascaded Hydropower Plant," Energies, MDPI, vol. 14(2), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Li & Muhong Zhang & Kory Hedman, 2021. "Extreme Ray Feasibility Cuts for Unit Commitment with Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1037-1055, July.
    2. M. Jenabi & S. M. T. Fatemi Ghomi & S. A. Torabi & Moeen Sammak Jalali, 2022. "An accelerated Benders decomposition algorithm for stochastic power system expansion planning using sample average approximation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1304-1336, December.
    3. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    4. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    5. Lixin Tang & Wei Jiang & Georgios Saharidis, 2013. "An improved Benders decomposition algorithm for the logistics facility location problem with capacity expansions," Annals of Operations Research, Springer, vol. 210(1), pages 165-190, November.
    6. Teodor Gabriel Crainic & Mike Hewitt & Francesca Maggioni & Walter Rei, 2021. "Partial Benders Decomposition: General Methodology and Application to Stochastic Network Design," Transportation Science, INFORMS, vol. 55(2), pages 414-435, March.
    7. M. Jenabi & S. Fatemi Ghomi & S. Torabi & S. Hosseinian, 2015. "Acceleration strategies of Benders decomposition for the security constraints power system expansion planning," Annals of Operations Research, Springer, vol. 235(1), pages 337-369, December.
    8. Joe Naoum-Sawaya & Samir Elhedhli, 2013. "An interior-point Benders based branch-and-cut algorithm for mixed integer programs," Annals of Operations Research, Springer, vol. 210(1), pages 33-55, November.
    9. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    10. Hanif Sherali & Brian Lunday, 2013. "On generating maximal nondominated Benders cuts," Annals of Operations Research, Springer, vol. 210(1), pages 57-72, November.
    11. de Sá, Elisangela Martins & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2013. "An improved Benders decomposition algorithm for the tree of hubs location problem," European Journal of Operational Research, Elsevier, vol. 226(2), pages 185-202.
    12. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    13. Lim, Gino J. & Bard, Jonathan F., 2016. "Benders decomposition and an IP-based heuristic for selecting IMRT treatment beam anglesAuthor-Name: Lin, Sifeng," European Journal of Operational Research, Elsevier, vol. 251(3), pages 715-726.
    14. Ragheb Rahmaniani & Shabbir Ahmed & Teodor Gabriel Crainic & Michel Gendreau & Walter Rei, 2020. "The Benders Dual Decomposition Method," Operations Research, INFORMS, vol. 68(3), pages 878-895, May.
    15. Georgios Saharidis & Marianthi Ierapetritou, 2013. "Speed-up Benders decomposition using maximum density cut (MDC) generation," Annals of Operations Research, Springer, vol. 210(1), pages 101-123, November.
    16. Fausto Errico & Teodor Gabriel Crainic & Federico Malucelli & Maddalena Nonato, 2017. "A Benders Decomposition Approach for the Symmetric TSP with Generalized Latency Arising in the Design of Semiflexible Transit Systems," Transportation Science, INFORMS, vol. 51(2), pages 706-722, May.
    17. Kuthambalayan, Thyagaraj S. & Mehta, Peeyush & Shanker, Kripa, 2014. "Integrating operations and marketing decisions using delayed differentiation of products and guaranteed delivery time under stochastic demand," European Journal of Operational Research, Elsevier, vol. 237(2), pages 617-627.
    18. Jeihoonian, Mohammad & Kazemi Zanjani, Masoumeh & Gendreau, Michel, 2016. "Accelerating Benders decomposition for closed-loop supply chain network design: Case of used durable products with different quality levels," European Journal of Operational Research, Elsevier, vol. 251(3), pages 830-845.
    19. Joe Naoum‐Sawaya & Samir Elhedhli, 2010. "A nested benders decomposition approach for telecommunication network planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 519-539, September.
    20. Nader Azad & Georgios Saharidis & Hamid Davoudpour & Hooman Malekly & Seyed Yektamaram, 2013. "Strategies for protecting supply chain networks against facility and transportation disruptions: an improved Benders decomposition approach," Annals of Operations Research, Springer, vol. 210(1), pages 125-163, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:210:y:2013:i:1:p:387-410:10.1007/s10479-012-1092-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.