IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i4p1919-1939.html
   My bibliography  Save this article

A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties

Author

Listed:
  • Zhouchun Huang

    (College of Economics and Management, Nanjing University of Aeronautics and Astronautics, 211100 Nanjing, China)

  • Qipeng P. Zheng

    (Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, Florida 32816)

  • Andrew L. Liu

    (School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907)

Abstract

Modern electric power systems have witnessed rapidly increasing penetration of renewable energy, storage, electrical vehicles, and various demand response resources. The electric infrastructure planning is thus facing more challenges as a result of the variability and uncertainties arising from the diverse new resources. This study aims to develop a multistage and multiscale stochastic mixed integer programming (MM-SMIP) model to capture both the coarse-temporal-scale uncertainties, such as investment cost and long-run demand stochasticity, and fine-temporal-scale uncertainties, such as hourly renewable energy output and electricity demand uncertainties, for the power system capacity expansion problem. To be applied to a real power system, the resulting model will lead to extremely large-scale mixed integer programming problems, which suffer not only the well-known curse of dimensionality but also computational difficulties with a vast number of integer variables at each stage. In addressing such challenges associated with the MM-SMIP model, we propose a nested cross decomposition algorithm that consists of two layers of decomposition—that is, the Dantzig–Wolfe decomposition and L-shaped decomposition. The algorithm exhibits promising computational performance under our numerical study and is especially amenable to parallel computing, which will also be demonstrated through the computational results.

Suggested Citation

  • Zhouchun Huang & Qipeng P. Zheng & Andrew L. Liu, 2022. "A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1919-1939, July.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:4:p:1919-1939
    DOI: 10.1287/ijoc.2022.1177
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.1177
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.1177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N. V. Sahinidis & I. E. Grossmann, 1992. "Reformulation of the Multiperiod MILP Model for Capacity Expansion of Chemical Processes," Operations Research, INFORMS, vol. 40(1-supplem), pages 127-144, February.
    2. Heejung Park, 2020. "Generation Capacity Expansion Planning Considering Hourly Dynamics of Renewable Resources," Energies, MDPI, vol. 13(21), pages 1-15, October.
    3. Sampath Rajagopalan & Medini R. Singh & Thomas E. Morton, 1998. "Capacity Expansion and Replacement in Growing Markets with Uncertain Technological Breakthroughs," Management Science, INFORMS, vol. 44(1), pages 12-30, January.
    4. Huang, Zhouchun & Zheng, Qipeng Phil, 2020. "A multistage stochastic programming approach for preventive maintenance scheduling of GENCOs with natural gas contract," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1036-1051.
    5. Gorman, Will & Mills, Andrew & Wiser, Ryan, 2019. "Improving estimates of transmission capital costs for utility-scale wind and solar projects to inform renewable energy policy," Energy Policy, Elsevier, vol. 135(C).
    6. Hanan Luss, 1982. "Operations Research and Capacity Expansion Problems: A Survey," Operations Research, INFORMS, vol. 30(5), pages 907-947, October.
    7. Ryan, D. M. & Falkner, J. C., 1988. "On the integer properties of scheduling set partitioning models," European Journal of Operational Research, Elsevier, vol. 35(3), pages 442-456, June.
    8. Kavinesh J. Singh & Andy B. Philpott & R. Kevin Wood, 2009. "Dantzig-Wolfe Decomposition for Solving Multistage Stochastic Capacity-Planning Problems," Operations Research, INFORMS, vol. 57(5), pages 1271-1286, October.
    9. Suvrajeet Sen & Lihua Yu & Talat Genc, 2006. "A Stochastic Programming Approach to Power Portfolio Optimization," Operations Research, INFORMS, vol. 54(1), pages 55-72, February.
    10. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    11. Antunes, Antonio & Peeters, Dominique, 2001. "On solving complex multi-period location models using simulated annealing," European Journal of Operational Research, Elsevier, vol. 130(1), pages 190-201, April.
    12. James C. Bean & Julia L. Higle & Robert L. Smith, 1992. "Capacity Expansion Under Stochastic Demands," Operations Research, INFORMS, vol. 40(3-supplem), pages 210-216, June.
    13. Francisco Munoz & Jean-Paul Watson, 2015. "A scalable solution framework for stochastic transmission and generation planning problems," Computational Management Science, Springer, vol. 12(4), pages 491-518, October.
    14. Gustavo Angulo & Shabbir Ahmed & Santanu S. Dey, 2016. "Improving the Integer L-Shaped Method," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 483-499, August.
    15. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    16. Warren B. Powell & Abraham George & Hugo Simão & Warren Scott & Alan Lamont & Jeffrey Stewart, 2012. "SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology, and Policy," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 665-682, November.
    17. Antonio J. Conejo & Nicholas G. Hall & Daniel Zhuoyu Long & Runhao Zhang, 2021. "Robust Capacity Planning for Project Management," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1533-1550, October.
    18. Poncelet, Kris & Delarue, Erik & Six, Daan & Duerinck, Jan & D’haeseleer, William, 2016. "Impact of the level of temporal and operational detail in energy-system planning models," Applied Energy, Elsevier, vol. 162(C), pages 631-643.
    19. Gary D. Eppen & R. Kipp Martin & Linus Schrage, 1989. "OR Practice—A Scenario Approach to Capacity Planning," Operations Research, INFORMS, vol. 37(4), pages 517-527, August.
    20. Morten Riis & Kim Allan Andersen, 2002. "Capacitated Network Design with Uncertain Demand," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 247-260, August.
    21. Shanling Li & Devanath Tirupati, 1994. "Dynamic Capacity Expansion Problem with Multiple Products: Technology Selection and Timing of Capacity Additions," Operations Research, INFORMS, vol. 42(5), pages 958-976, October.
    22. Michail Chronopoulos, Verena Hagspiel, and Stein-Erik Fleten, 2016. "Stepwise Green Investment under Policy Uncertainty," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    23. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    24. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2017. "Lagrangian Heuristics for Large-Scale Dynamic Facility Location with Generalized Modular Capacities," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 388-404, August.
    25. Teichgraeber, Holger & Brandt, Adam R., 2019. "Clustering methods to find representative periods for the optimization of energy systems: An initial framework and comparison," Applied Energy, Elsevier, vol. 239(C), pages 1283-1293.
    26. Qipeng Zheng & Jianhui Wang & Panos Pardalos & Yongpei Guan, 2013. "A decomposition approach to the two-stage stochastic unit commitment problem," Annals of Operations Research, Springer, vol. 210(1), pages 387-410, November.
    27. Jikai Zou & Shabbir Ahmed & Xu Andy Sun, 2018. "Partially Adaptive Stochastic Optimization for Electric Power Generation Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 388-401, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kavinesh J. Singh & Andy B. Philpott & R. Kevin Wood, 2009. "Dantzig-Wolfe Decomposition for Solving Multistage Stochastic Capacity-Planning Problems," Operations Research, INFORMS, vol. 57(5), pages 1271-1286, October.
    2. Allman, Andrew & Zhang, Qi, 2020. "Dynamic location of modular manufacturing facilities with relocation of individual modules," European Journal of Operational Research, Elsevier, vol. 286(2), pages 494-507.
    3. Shabbir Ahmed & Nikolaos V. Sahinidis, 2003. "An Approximation Scheme for Stochastic Integer Programs Arising in Capacity Expansion," Operations Research, INFORMS, vol. 51(3), pages 461-471, June.
    4. Metin Çakanyıldırım & Robin O. Roundy & Samuel C. Wood, 2004. "Optimal machine capacity expansions with nested limitations under stochastic demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(2), pages 217-241, March.
    5. Kai Huang & Shabbir Ahmed, 2009. "The Value of Multistage Stochastic Programming in Capacity Planning Under Uncertainty," Operations Research, INFORMS, vol. 57(4), pages 893-904, August.
    6. Van-Anh Truong & Robin O. Roundy, 2011. "Multidimensional Approximation Algorithms for Capacity-Expansion Problems," Operations Research, INFORMS, vol. 59(2), pages 313-327, April.
    7. Poretus, Evan L. & Angelus, Alexander, 2000. "Simultaneous Production and Capacity Management under Stochastic Demand for Perishable Goods," Research Papers 1419r, Stanford University, Graduate School of Business.
    8. Jan A. Van Mieghem, 2003. "Commissioned Paper: Capacity Management, Investment, and Hedging: Review and Recent Developments," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 269-302, July.
    9. Porteus, Evan L. & Angelus, Alexandar & Wood, Samuel C., 2000. "Optimal Sizing and Timing of Modular Capacity Expansions," Research Papers 1479r2, Stanford University, Graduate School of Business.
    10. Alexandar Angelus & Evan L. Porteus, 2002. "Simultaneous Capacity and Production Management of Short-Life-Cycle, Produce-to-Stock Goods Under Stochastic Demand," Management Science, INFORMS, vol. 48(3), pages 399-413, March.
    11. Francisco Barahona & Stuart Bermon & Oktay Günlük & Sarah Hood, 2005. "Robust capacity planning in semiconductor manufacturing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 459-468, August.
    12. Hongmin Li & Stephen C. Graves & Woonghee Tim Huh, 2014. "Optimal Capacity Conversion for Product Transitions Under High Service Requirements," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 46-60, February.
    13. Jonas Christoffer Villumsen & Joe Naoum‐Sawaya, 2016. "Column generation for stochastic green telecommunication network planning with switchable base stations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(5), pages 351-366, August.
    14. Martínez-Costa, Carme & Mas-Machuca, Marta & Benedito, Ernest & Corominas, Albert, 2014. "A review of mathematical programming models for strategic capacity planning in manufacturing," International Journal of Production Economics, Elsevier, vol. 153(C), pages 66-85.
    15. Harrison, J. Michael & Van Mieghem, Jan A., 1999. "Multi-resource investment strategies: Operational hedging under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 113(1), pages 17-29, February.
    16. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.
    17. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.
    18. Villumsen, J.C. & Philpott, A.B., 2012. "Investment in electricity networks with transmission switching," European Journal of Operational Research, Elsevier, vol. 222(2), pages 377-385.
    19. Thomas W. M. Vossen & R. Kevin Wood & Alexandra M. Newman, 2016. "Hierarchical Benders Decomposition for Open-Pit Mine Block Sequencing," Operations Research, INFORMS, vol. 64(4), pages 771-793, August.
    20. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:4:p:1919-1939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.