IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v51y2003i3p461-471.html
   My bibliography  Save this article

An Approximation Scheme for Stochastic Integer Programs Arising in Capacity Expansion

Author

Listed:
  • Shabbir Ahmed

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive, Atlanta, Georgia 30332)

  • Nikolaos V. Sahinidis

    (Department of Chemical and Biomolecular Engineering, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801)

Abstract

Planning for capacity expansion forms a crucial part of the strategic-level decision making in many applications. Consequently, quantitative models for economic capacity expansion planning have been the subject of intense research. However, much of the work in this area has been restricted to linear cost models and/or limited degree of uncertainty to make the problems analytically tractable. This paper addresses a stochastic capacity expansion problem where the economies-of-scale in expansion costs are handled via fixed-charge cost functions, and forecast uncertainties in the problem parameters are explicitly considered by specifying a set of scenarios. The resulting formulation is a multistage stochastic integer program. We develop a fast, linear-programming-based, approximation scheme that exploits the decomposable structure and is guaranteed to produce feasible solutions for this problem. Through a probabilistic analysis, we prove that the optimality gap of the heuristic solution almost surely vanishes asymptotically as the problem size increases.

Suggested Citation

  • Shabbir Ahmed & Nikolaos V. Sahinidis, 2003. "An Approximation Scheme for Stochastic Integer Programs Arising in Capacity Expansion," Operations Research, INFORMS, vol. 51(3), pages 461-471, June.
  • Handle: RePEc:inm:oropre:v:51:y:2003:i:3:p:461-471
    DOI: 10.1287/opre.51.3.461.14960
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.51.3.461.14960
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.51.3.461.14960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James C. Bean & Julia L. Higle & Robert L. Smith, 1992. "Capacity Expansion Under Stochastic Demands," Operations Research, INFORMS, vol. 40(3-supplem), pages 210-216, June.
    2. C. O. Fong & V. Srinivasan, 1981. "The Multiregion Dynamic Capacity Expansion Problem, Part II," Operations Research, INFORMS, vol. 29(4), pages 800-816, August.
    3. Iraj Saniee, 1995. "An Efficient Algorithm for the Multiperiod Capacity Expansion of One Location in Telecommunications," Operations Research, INFORMS, vol. 43(1), pages 187-190, February.
    4. Swaminathan, Jayashankar M., 2000. "Tool capacity planning for semiconductor fabrication facilities under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 120(3), pages 545-558, February.
    5. N. V. Sahinidis & I. E. Grossmann, 1992. "Reformulation of the Multiperiod MILP Model for Capacity Expansion of Chemical Processes," Operations Research, INFORMS, vol. 40(1-supplem), pages 127-144, February.
    6. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    7. Oded Berman & Zvi Ganz & Janet M. Wagner, 1994. "A stochastic optimization model for planning capacity expansion in a service industry under uncertain demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(4), pages 545-564, June.
    8. Sampath Rajagopalan & Medini R. Singh & Thomas E. Morton, 1998. "Capacity Expansion and Replacement in Growing Markets with Uncertain Technological Breakthroughs," Management Science, INFORMS, vol. 44(1), pages 12-30, January.
    9. Manuel Laguna, 1998. "Applying Robust Optimization to Capacity Expansion of One Location in Telecommunications with Demand Uncertainty," Management Science, INFORMS, vol. 44(11-Part-2), pages 101-110, November.
    10. Klincewicz, John G. & Luss, Hanan & Yu, Chang-Sung, 1988. "A large-scale multilocation capacity planning model," European Journal of Operational Research, Elsevier, vol. 34(2), pages 178-190, March.
    11. C. O. Fong & V. Srinivasan, 1981. "The Multiregion Dynamic Capacity Expansion Problem, Part I," Operations Research, INFORMS, vol. 29(4), pages 787-799, August.
    12. Stuart Bermon & Sarah Jean Hood, 1999. "Capacity Optimization Planning System (CAPS)," Interfaces, INFORMS, vol. 29(5), pages 31-50, October.
    13. Gary D. Eppen & R. Kipp Martin & Linus Schrage, 1989. "OR Practice—A Scenario Approach to Capacity Planning," Operations Research, INFORMS, vol. 37(4), pages 517-527, August.
    14. Charles H. Fine & Robert M. Freund, 1990. "Optimal Investment in Product-Flexible Manufacturing Capacity," Management Science, INFORMS, vol. 36(4), pages 449-466, April.
    15. Shanling Li & Devanath Tirupati, 1994. "Dynamic Capacity Expansion Problem with Multiple Products: Technology Selection and Timing of Capacity Additions," Operations Research, INFORMS, vol. 42(5), pages 958-976, October.
    16. Rajagopalan, S., 1994. "Capacity expansion with alternative technology choices," European Journal of Operational Research, Elsevier, vol. 77(3), pages 392-403, September.
    17. Frederic H. Murphy & Howard J. Weiss, 1990. "An approach to modeling electric utility capacity expansion planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(6), pages 827-845, December.
    18. Suk-Gwon Chang & Bezalel Gavish, 1995. "Lower Bounding Procedures for Multiperiod Telecommunications Network Expansion Problems," Operations Research, INFORMS, vol. 43(1), pages 43-57, February.
    19. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    20. John Freidenfelds, 1980. "Capacity Expansion when Demand Is a Birth-Death Random Process," Operations Research, INFORMS, vol. 28(3-part-ii), pages 712-721, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Edward & Goetschalckx, Marc, 2014. "Strategic robust supply chain design based on the Pareto-optimal tradeoff between efficiency and risk," European Journal of Operational Research, Elsevier, vol. 237(2), pages 508-518.
    2. Ukkusuri, Satish V. & Patil, Gopal, 2009. "Multi-period transportation network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 625-642, July.
    3. Kai Huang & Shabbir Ahmed, 2009. "The Value of Multistage Stochastic Programming in Capacity Planning Under Uncertainty," Operations Research, INFORMS, vol. 57(4), pages 893-904, August.
    4. Martínez-Costa, Carme & Mas-Machuca, Marta & Benedito, Ernest & Corominas, Albert, 2014. "A review of mathematical programming models for strategic capacity planning in manufacturing," International Journal of Production Economics, Elsevier, vol. 153(C), pages 66-85.
    5. Beraldi, Patrizia & Ghiani, Gianpaolo & Guerriero, Emanuela & Grieco, Antonio, 2006. "Scenario-based planning for lot-sizing and scheduling with uncertain processing times," International Journal of Production Economics, Elsevier, vol. 101(1), pages 140-149, May.
    6. Geun-Cheol Lee & Martin Höhenrieder & Jean-Paul Watson & David Woodruff, 2015. "Chance and service level constraints for stochastic generation expansion planning," Netnomics, Springer, vol. 16(3), pages 169-191, December.
    7. Huang, Kai & Ahmed, Shabbir, 2010. "A stochastic programming approach for planning horizons of infinite horizon capacity planning problems," European Journal of Operational Research, Elsevier, vol. 200(1), pages 74-84, January.
    8. Qiang Meng & Tingsong Wang & Shuaian Wang, 2015. "Multi-period liner ship fleet planning with dependent uncertain container shipment demand," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(1), pages 43-67, January.
    9. Woonghee Tim Huh & Robin O. Roundy & Metin Çakanyildirim, 2006. "A general strategic capacity planning model under demand uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(2), pages 137-150, March.
    10. Torres-Rincón, Samuel & Sánchez-Silva, Mauricio & Bastidas-Arteaga, Emilio, 2021. "A multistage stochastic program for the design and management of flexible infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    11. Yongpei Guan & Andrew J. Miller, 2008. "Polynomial-Time Algorithms for Stochastic Uncapacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 56(5), pages 1172-1183, October.
    12. Ahmed, Shabbir & Sahinidis, Nikolaos V., 2008. "Selection, acquisition, and allocation of manufacturing technology in a multi-period environment," European Journal of Operational Research, Elsevier, vol. 189(3), pages 807-821, September.
    13. Hongmin Li & Stephen C. Graves & Woonghee Tim Huh, 2014. "Optimal Capacity Conversion for Product Transitions Under High Service Requirements," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 46-60, February.
    14. Majid Taghavi & Kai Huang, 2020. "A Lagrangian relaxation approach for stochastic network capacity expansion with budget constraints," Annals of Operations Research, Springer, vol. 284(2), pages 605-621, January.
    15. Yongpei Guan, 2011. "Stochastic lot-sizing with backlogging: computational complexity analysis," Journal of Global Optimization, Springer, vol. 49(4), pages 651-678, April.
    16. Klibi, Walid & Martel, Alain, 2012. "Scenario-based Supply Chain Network risk modeling," European Journal of Operational Research, Elsevier, vol. 223(3), pages 644-658.
    17. Pimentel, Bruno S. & Mateus, Geraldo R. & Almeida, Franklin A., 2013. "Stochastic capacity planning and dynamic network design," International Journal of Production Economics, Elsevier, vol. 145(1), pages 139-149.
    18. Woonghee Tim Huh & Robin O. Roundy, 2005. "A continuous‐time strategic capacity planning model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 329-343, June.
    19. Ali Fattahi & Sriram Dasu & Reza Ahmadi, 2023. "Peak-Load Energy Management by Direct Load Control Contracts," Management Science, INFORMS, vol. 69(5), pages 2788-2813, May.
    20. Kavinesh J. Singh & Andy B. Philpott & R. Kevin Wood, 2009. "Dantzig-Wolfe Decomposition for Solving Multistage Stochastic Capacity-Planning Problems," Operations Research, INFORMS, vol. 57(5), pages 1271-1286, October.
    21. M. Melo & S. Nickel & F. Saldanha-da-Gama, 2014. "An efficient heuristic approach for a multi-period logistics network redesign problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 80-108, April.
    22. Jikai Zou & Shabbir Ahmed & Xu Andy Sun, 2018. "Partially Adaptive Stochastic Optimization for Electric Power Generation Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 388-401, May.
    23. Singh, Gaurav & Sier, David & Ernst, Andreas T. & Gavriliouk, Olena & Oyston, Rob & Giles, Tracey & Welgama, Palitha, 2012. "A mixed integer programming model for long term capacity expansion planning: A case study from The Hunter Valley Coal Chain," European Journal of Operational Research, Elsevier, vol. 220(1), pages 210-224.
    24. Majid Taghavi & Kai Huang, 2016. "A multi‐stage stochastic programming approach for network capacity expansion with multiple sources of capacity," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 600-614, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Huang & Shabbir Ahmed, 2009. "The Value of Multistage Stochastic Programming in Capacity Planning Under Uncertainty," Operations Research, INFORMS, vol. 57(4), pages 893-904, August.
    2. Van-Anh Truong & Robin O. Roundy, 2011. "Multidimensional Approximation Algorithms for Capacity-Expansion Problems," Operations Research, INFORMS, vol. 59(2), pages 313-327, April.
    3. C A Poojari & C Lucas & G Mitra, 2008. "Robust solutions and risk measures for a supply chain planning problem under uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 2-12, January.
    4. Francisco Barahona & Stuart Bermon & Oktay Günlük & Sarah Hood, 2005. "Robust capacity planning in semiconductor manufacturing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 459-468, August.
    5. Ahmed, Shabbir & Sahinidis, Nikolaos V., 2008. "Selection, acquisition, and allocation of manufacturing technology in a multi-period environment," European Journal of Operational Research, Elsevier, vol. 189(3), pages 807-821, September.
    6. Zhouchun Huang & Qipeng P. Zheng & Andrew L. Liu, 2022. "A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1919-1939, July.
    7. Metin Çakanyıldırım & Robin O. Roundy & Samuel C. Wood, 2004. "Optimal machine capacity expansions with nested limitations under stochastic demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(2), pages 217-241, March.
    8. Kavinesh J. Singh & Andy B. Philpott & R. Kevin Wood, 2009. "Dantzig-Wolfe Decomposition for Solving Multistage Stochastic Capacity-Planning Problems," Operations Research, INFORMS, vol. 57(5), pages 1271-1286, October.
    9. Hongmin Li & Stephen C. Graves & Woonghee Tim Huh, 2014. "Optimal Capacity Conversion for Product Transitions Under High Service Requirements," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 46-60, February.
    10. Martínez-Costa, Carme & Mas-Machuca, Marta & Benedito, Ernest & Corominas, Albert, 2014. "A review of mathematical programming models for strategic capacity planning in manufacturing," International Journal of Production Economics, Elsevier, vol. 153(C), pages 66-85.
    11. E Aghezzaf, 2005. "Capacity planning and warehouse location in supply chains with uncertain demands," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 453-462, April.
    12. Jan A. Van Mieghem, 2003. "Commissioned Paper: Capacity Management, Investment, and Hedging: Review and Recent Developments," Manufacturing & Service Operations Management, INFORMS, vol. 5(4), pages 269-302, July.
    13. Porteus, Evan L. & Angelus, Alexandar & Wood, Samuel C., 2000. "Optimal Sizing and Timing of Modular Capacity Expansions," Research Papers 1479r2, Stanford University, Graduate School of Business.
    14. Huang, Kai & Ahmed, Shabbir, 2010. "A stochastic programming approach for planning horizons of infinite horizon capacity planning problems," European Journal of Operational Research, Elsevier, vol. 200(1), pages 74-84, January.
    15. Torres-Rincón, Samuel & Sánchez-Silva, Mauricio & Bastidas-Arteaga, Emilio, 2021. "A multistage stochastic program for the design and management of flexible infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    16. Bennett, Derek P. & Yano, Candace A., 2004. "A decomposition approach for an equipment selection and multiple product routing problem incorporating environmental factors," European Journal of Operational Research, Elsevier, vol. 156(3), pages 643-664, August.
    17. Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).
    18. Harrison, J. Michael & Van Mieghem, Jan A., 1999. "Multi-resource investment strategies: Operational hedging under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 113(1), pages 17-29, February.
    19. Mojtaba Farrokh & Ehsan Ahmadi & Minghe Sun, 2023. "A robust stochastic possibilistic programming model for dynamic supply chain network design with pricing and technology selection decisions," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1082-1120, September.
    20. S Mudchanatongsuk & F Ordóñez & J Liu, 2008. "Robust solutions for network design under transportation cost and demand uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 652-662, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:51:y:2003:i:3:p:461-471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.