IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v54y2006i1p55-72.html
   My bibliography  Save this article

A Stochastic Programming Approach to Power Portfolio Optimization

Author

Listed:
  • Suvrajeet Sen

    (SIE Department, MORE Institute, University of Arizona, Tucson, Arizona 85721)

  • Lihua Yu

    (SIE Department, MORE Institute, University of Arizona, Tucson, Arizona 85721)

  • Talat Genc

    (SIE Department, MORE Institute, University of Arizona, Tucson, Arizona 85721)

Abstract

We consider a power portfolio optimization model that is intended as a decision aid for scheduling and hedging (DASH) in the wholesale power market. Our multiscale model integrates the unit commitment model with financial decision making by including the forwards and spot market activity within the scheduling decision model. The methodology is based on a multiscale stochastic programming model that selects portfolio positions that perform well on a variety of scenarios generated through statistical modeling and optimization. When compared with several commonly used fixed-mix policies, our experiments demonstrate that the DASH model provides significant advantages.

Suggested Citation

  • Suvrajeet Sen & Lihua Yu & Talat Genc, 2006. "A Stochastic Programming Approach to Power Portfolio Optimization," Operations Research, INFORMS, vol. 54(1), pages 55-72, February.
  • Handle: RePEc:inm:oropre:v:54:y:2006:i:1:p:55-72
    DOI: 10.1287/opre.1050.0264
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1050.0264
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1050.0264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. David R. Cariño & William T. Ziemba, 1998. "Formulation of the Russell-Yasuda Kasai Financial Planning Model," Operations Research, INFORMS, vol. 46(4), pages 433-449, August.
    3. Guglielmo Lulli & Suvrajeet Sen, 2004. "A Branch-and-Price Algorithm for Multistage Stochastic Integer Programming with Application to Stochastic Batch-Sizing Problems," Management Science, INFORMS, vol. 50(6), pages 786-796, June.
    4. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    5. Samer Takriti & Benedikt Krasenbrink & Lilian S.-Y. Wu, 2000. "Incorporating Fuel Constraints and Electricity Spot Prices into the Stochastic Unit Commitment Problem," Operations Research, INFORMS, vol. 48(2), pages 268-280, April.
    6. Iivo Vehvilainen, 2002. "Basics of electricity derivative pricing in competitive markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 45-60.
    7. Jason Wu & Suvrajeet Sen, 2000. "A Stochastic Programming Model for Currency Option Hedging," Annals of Operations Research, Springer, vol. 100(1), pages 227-249, December.
    8. Matthias Nowak & Werner Römisch, 2000. "Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-Thermal System under Uncertainty," Annals of Operations Research, Springer, vol. 100(1), pages 251-272, December.
    9. Irvin J. Lustig & John M. Mulvey & Tamra J. Carpenter, 1991. "Formulating Two-Stage Stochastic Programs for Interior Point Methods," Operations Research, INFORMS, vol. 39(5), pages 757-770, October.
    10. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davari-Ardakani, Hamed & Aminnayeri, Majid & Seifi, Abbas, 2014. "A study on modeling the dynamics of statistically dependent returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 35-51.
    2. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    3. Caio Mário Mesquita & Cristiano Arbex Valle & Adriano César Machado Pereira, 2024. "Scenario Generation for Financial Data with a Machine Learning Approach Based on Realized Volatility and Copulas," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1879-1919, May.
    4. Kavinesh J. Singh & Andy B. Philpott & R. Kevin Wood, 2009. "Dantzig-Wolfe Decomposition for Solving Multistage Stochastic Capacity-Planning Problems," Operations Research, INFORMS, vol. 57(5), pages 1271-1286, October.
    5. Barro, Diana & Consigli, Giorgio & Varun, Vivek, 2022. "A stochastic programming model for dynamic portfolio management with financial derivatives," Journal of Banking & Finance, Elsevier, vol. 140(C).
    6. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    7. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    8. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    9. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    10. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    11. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    12. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    13. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    14. Chang, Chia-Lin & Hsu, Hui-Kuang, 2013. "Modelling Volatility Size Effects for Firm Performance: The Impact of Chinese Tourists to Taiwan," MPRA Paper 45691, University Library of Munich, Germany.
    15. Budi Setiawan & Marwa Ben Abdallah & Maria Fekete-Farkas & Robert Jeyakumar Nathan & Zoltan Zeman, 2021. "GARCH (1,1) Models and Analysis of Stock Market Turmoil during COVID-19 Outbreak in an Emerging and Developed Economy," JRFM, MDPI, vol. 14(12), pages 1-19, December.
    16. Chia-Lin Chang & Michael McAleer, 2017. "A Simple Test for Causality in Volatility," Econometrics, MDPI, vol. 5(1), pages 1-5, March.
    17. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    18. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    19. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," LIDAM Discussion Papers CORE 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. repec:wyi:journl:002087 is not listed on IDEAS
    21. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:54:y:2006:i:1:p:55-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.