IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution

  • Makoto Takahashi

    (Center for the Study of Finance and Insurance, Osaka University and Department of Finance, Kellogg School of Management, Northwestern University)

  • Toshiaki Watanabe

    (Institute of Economic Research, Hitotsubashi University)

  • Yasuhiro Omori

    (Faculty of Economics, The University of Tokyo)

   The realized stochastic volatility model of Takahashi, Omori, and Watanabe (2009), which incorporates the asymmetric stochastic volatility model with the realized volatility, is extended with more general form of bias correction in realized volatility and wider class distribution, the generalized hyperbolic skew Student's t -distribution, for nancial returns. The extensions make it possible to adjust the bias due to the market microstructure noise and non-trading hours, which possibly depends on the level of the volatility, and to consider the heavy tail and skewness in nancial returns. With the Bayesian estimation scheme via Markov chain Monte Carlo method, the model enables us to estimate the parameters in the return distribution and in the model jointly. It also makes it possible to forecast volatility and return quantiles by sampling from their posterior distributions jointly. The model is applied to quantile forecasts of nancial returns such as value-at-risk and expected shortfall as well as volatility forecasts and those forecasts are evaluated by several backtesting procedures. Empirical results with SPDR, the S&P 500 exchange-traded fund, show that the heavy tail and skewness of daily returns are important for the model fit and the quantile forecasts but not for the volatility forecasts, and that the additional bias correction improves the quantile forecasts but does not substantially improve the model fit nor the volatility forecasts.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2014/2014cf921.pdf
Download Restriction: no

Paper provided by CIRJE, Faculty of Economics, University of Tokyo in its series CIRJE F-Series with number CIRJE-F-921.

as
in new window

Length: 41 pages
Date of creation: Feb 2014
Date of revision:
Handle: RePEc:tky:fseres:2014cf921
Contact details of provider: Postal:
Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033

Phone: +81-3-5841-5644
Fax: +81-3-5841-8294
Web page: http://www.cirje.e.u-tokyo.ac.jp/index.html
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jouchi Nakajima & Yasuhiro Omori, 2010. "Stochastic Volatility Model with Leverage and Asymmetrically Heavy-tailed Error Using GH Skew Student's t-distribution," Global COE Hi-Stat Discussion Paper Series gd09-124, Institute of Economic Research, Hitotsubashi University.
  2. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  3. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(2), pages 275-309.
  4. Dobrislav Dobrev & Pawel J. Szerszen, 2010. "The information content of high-frequency data for estimating equity return models and forecasting risk," International Finance Discussion Papers 1005, Board of Governors of the Federal Reserve System (U.S.).
  5. Toshiaki Watanabe, 2012. "Quantile Forecasts Of Financial Returns Using Realized Garch Models," The Japanese Economic Review, Japanese Economic Association, vol. 63(1), pages 68-80, 03.
  6. Giot Pierre & Laurent Sebastien, 2001. "Modelling daily value-at-risk using realized volatility and arch type models," Research Memorandum 014, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  7. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 84-108.
  8. Jean-Marie Dufour, 2005. "Monte Carlo tests with nuisance parameters: a general approach to finite-sample inference and non-standard asymptotics," CIRANO Working Papers 2005s-02, CIRANO.
  9. Masato Ubukata & Toshiaki Watanabe, 2014. "Pricing Nikkei 225 Options Using Realized Volatility," The Japanese Economic Review, Japanese Economic Association, vol. 65(4), pages 431-467, December.
  10. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2008. "Quantile forecasts of daily exchange rate returns from forecasts of realized volatility," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 729-750, September.
  11. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
  12. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
  13. F. M. Bandi & J. R. Russell, 2008. "Microstructure Noise, Realized Variance, and Optimal Sampling," Review of Economic Studies, Oxford University Press, vol. 75(2), pages 339-369.
  14. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
  15. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  16. Trojan, Sebastian, 2013. "Regime Switching Stochastic Volatility with Skew, Fat Tails and Leverage using Returns and Realized Volatility Contemporaneously," Economics Working Paper Series 1341, University of St. Gallen, School of Economics and Political Science, revised Aug 2014.
  17. Makoto Takahashi & Yasuhiro Omori & Toshiaki Watanabe, 2007. "Estimating Stochastic Volatility Models Using Daily Returns and Realized Volatility Simultaneously," CIRJE F-Series CIRJE-F-515, CIRJE, Faculty of Economics, University of Tokyo.
  18. Yasuhiro Omori & Toshiaki Watanabe, 2007. "Block Sampler and Posterior Mode Estimation for Asymmetric Stochastic Volatility Models," CIRJE F-Series CIRJE-F-507, CIRJE, Faculty of Economics, University of Tokyo.
  19. Siem Jan Koopman & Marcel Scharth, 2011. "The Analysis of Stochastic Volatility in the Presence of Daily Realised Measures," Tinbergen Institute Discussion Papers 11-132/4, Tinbergen Institute.
  20. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  21. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages C1-C32, November.
  22. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389.
  23. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
  24. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
  25. Dobrislav Dobrev & Pawel J. Szerszen, 2010. "The information content of high-frequency data for estimating equity return models and forecasting risk," Finance and Economics Discussion Series 2010-45, Board of Governors of the Federal Reserve System (U.S.).
  26. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
  27. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, 09.
  28. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  29. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
  30. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
  31. Hasbrouck, Joel, 2007. "Empirical Market Microstructure: The Institutions, Economics, and Econometrics of Securities Trading," OUP Catalogue, Oxford University Press, number 9780195301649, December.
  32. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  33. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
  34. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
  35. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2011. "Multivariate High-Frequency-Based Volatility (HEAVY) Models," Economics Series Working Papers 533, University of Oxford, Department of Economics.
  36. Chib, Siddhartha & Winkelmann, Rainer, 2001. "Markov Chain Monte Carlo Analysis of Correlated Count Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 428-35, October.
  37. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  38. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649 Elsevier.
  39. Peter Reinhard Hansen & Zhuo Huang, 2012. "Exponential GARCH Modeling with Realized Measures of Volatility," CREATES Research Papers 2012-44, Department of Economics and Business Economics, Aarhus University.
  40. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
  41. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2014cf921. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.