IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20250011.html
   My bibliography  Save this paper

Score-driven time-varying parameter models with splinebased densities

Author

Listed:
  • Janneke van Brummelen

    (Vrije Universiteit Amsterdam)

  • Paolo Gorgi

    (Vrije Universiteit Amsterdam and Tinbergen Institute)

  • Siem Jan Koopman

    (Vrije Universiteit Amsterdam and Tinbergen Institute)

Abstract

We develop a score-driven time-varying parameter model where no particular parametric error distribution needs to be specified. The proposed method relies on a versatile spline-based density, which produces a score function that follows a natural cubic spline. This flexible approach nests the Gaussian density as a special case. It can also represent asymmetric and leptokurtic densities that produce outlier-robust updating functions for the time-varying parameter and are often appealing in empirical applications. As leading examples, we consider models where the time-varying parameters appear in the location or in the log-scale of the observations. The static parameter vector of the model can be estimated by means of maximum likelihood and we formally establish some of the asymptotic properties of such estimators. We illustrate the practical relevance of the proposed method in two empirical studies. We employ the location model to filter the mean of the U.S. monthly CPI inflation series and the scale model for volatility filtering of the full panel of daily stock returns from the S&P 500 index. The results show a competitive performance of the method compared to a set of competing models that are available in the existing literature.

Suggested Citation

  • Janneke van Brummelen & Paolo Gorgi & Siem Jan Koopman, 2025. "Score-driven time-varying parameter models with splinebased densities," Tinbergen Institute Discussion Papers 25-011/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20250011
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/25011.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Drew Creal & Bernd Schwaab & Siem Jan Koopman & Andr� Lucas, 2014. "Observation-Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 898-915, December.
    2. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    3. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Papers 1610.02863, arXiv.org.
    4. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
    5. Andrew Harvey & Alessandra Luati, 2014. "Filtering With Heavy Tails," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1112-1122, September.
    6. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    7. Blasques, Francisco & Ji, Jiangyu & Lucas, André, 2016. "Semiparametric score driven volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 58-69.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Catania, Leopoldo & Luati, Alessandra, 2023. "Semiparametric modeling of multiple quantiles," Journal of Econometrics, Elsevier, vol. 237(2).
    10. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    11. Nelson, Daniel B & Foster, Dean P, 1994. "Asymptotic Filtering Theory for Univariate ARCH Models," Econometrica, Econometric Society, vol. 62(1), pages 1-41, January.
    12. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    13. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
    14. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    15. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    16. Kooperberg, Charles & Stone, Charles J., 1991. "A study of logspline density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 12(3), pages 327-347, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
    2. Drew Creal & Siem Jan Koopman & André Lucas & Marcin Zamojski, 2015. "Generalized Autoregressive Method of Moments," Tinbergen Institute Discussion Papers 15-138/III, Tinbergen Institute, revised 06 Jul 2018.
    3. Eric A. Beutner & Yicong Lin & Andre Lucas, 2023. "Consistency, distributional convergence, and optimality of score-driven filters," Tinbergen Institute Discussion Papers 23-051/III, Tinbergen Institute.
    4. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    5. Creal, Drew & Koopman, Siem Jan & Lucas, André & Zamojski, Marcin, 2024. "Observation-driven filtering of time-varying parameters using moment conditions," Journal of Econometrics, Elsevier, vol. 238(2).
    6. Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017. "Time-Varying Transition Probabilities for Markov Regime Switching Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
    7. Lucas, André & Zhang, Xin, 2016. "Score-driven exponentially weighted moving averages and Value-at-Risk forecasting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 293-302.
    8. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Maximum Likelihood Estimation for correctly Specified Generalized Autoregressive Score Models: Feedback Effects, Contraction Conditions and Asymptotic Properties," Tinbergen Institute Discussion Papers 14-074/III, Tinbergen Institute.
    9. Blasques, Francisco & Ji, Jiangyu & Lucas, André, 2016. "Semiparametric score driven volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 58-69.
    10. Lucas, André & Opschoor, Anne & Schaumburg, Julia, 2016. "Accounting for missing values in score-driven time-varying parameter models," Economics Letters, Elsevier, vol. 148(C), pages 96-98.
    11. F Blasques & P Gorgi & S J Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models ," Working Papers hal-01377971, HAL.
    12. Michel Ferreira Cardia Haddad & Szabolcs Blazsek & Philip Arestis & Franz Fuerst & Hsia Hua Sheng, 2023. "The two-component Beta-t-QVAR-M-lev: a new forecasting model," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(4), pages 379-401, December.
    13. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Papers 1610.02863, arXiv.org.
    14. Siem Jan Koopman & André Lucas & Marcel Scharth, 2016. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
    15. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
    16. Ryoko Ito, 2016. "Asymptotic Theory for Beta-t-GARCH," Cambridge Working Papers in Economics 1607, Faculty of Economics, University of Cambridge.
    17. Olusanya E. Olubusoye & OlaOluwa S. Yaya, 2016. "Time series analysis of volatility in the petroleum pricing markets: the persistence, asymmetry and jumps in the returns series," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 40(3), pages 235-262, September.
    18. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    19. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
    20. Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2012. "Stationarity and Ergodicity of Univariate Generalized Autoregressive Score Processes," Tinbergen Institute Discussion Papers 12-059/4, Tinbergen Institute.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20250011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.