IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v211y2019i2p388-413.html
   My bibliography  Save this article

Dynamic semiparametric models for expected shortfall (and Value-at-Risk)

Author

Listed:
  • Patton, Andrew J.
  • Ziegel, Johanna F.
  • Chen, Rui

Abstract

Expected Shortfall (ES) is the average return on a risky asset conditional on the return being below some quantile of its distribution, namely its Value-at-Risk (VaR). The Basel III Accord, which will be implemented in the years leading up to 2019, places new attention on ES, but unlike VaR, there is little existing work on modeling ES. We use recent results from statistical decision theory to overcome the problem of “elicitability” for ES by jointly modeling ES and VaR, and propose new dynamic models for these risk measures. We provide estimation and inference methods for the proposed models, and confirm via simulation studies that the methods have good finite-sample properties. We apply these models to daily returns on four international equity indices, and find the proposed new ES–VaR models outperform forecasts based on GARCH or rolling window models.

Suggested Citation

  • Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
  • Handle: RePEc:eee:econom:v:211:y:2019:i:2:p:388-413
    DOI: 10.1016/j.jeconom.2018.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030440761930048X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2018.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    2. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
    3. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    4. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    5. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    6. Siem Jan Koopman & André Lucas & Marcel Scharth, 2016. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
    7. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    8. Francq, Christian & Zakoïan, Jean-Michel, 2015. "Risk-parameter estimation in volatility models," Journal of Econometrics, Elsevier, vol. 184(1), pages 158-173.
    9. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Sander Barendse, 2017. "Interquantile Expectation Regression," Tinbergen Institute Discussion Papers 17-034/III, Tinbergen Institute.
    12. Andrews, Donald W K, 1987. "Consistency in Nonlinear Econometric Models: A Generic Uniform Law of Large Numbers [On Unification of the Asymptotic Theory of Nonlinear Econometric Models]," Econometrica, Econometric Society, vol. 55(6), pages 1465-1471, November.
    13. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    14. Timo Dimitriadis & Sebastian Bayer, 2017. "A Joint Quantile and Expected Shortfall Regression Framework," Papers 1704.02213, arXiv.org, revised Aug 2017.
    15. Gschöpf, Philipp & Härdle, Wolfgang Karl & Mihoci, Andrija, 2015. "TERES: Tail event risk expectile based shortfall," SFB 649 Discussion Papers 2015-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    17. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    18. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    19. Dobrislav Dobrev∗ & Travis D. Nesmith & Dong Hwan Oh, 2017. "Accurate Evaluation of Expected Shortfall for Linear Portfolios with Elliptically Distributed Risk Factors," JRFM, MDPI, vol. 10(1), pages 1-14, February.
    20. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    21. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    22. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    23. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    24. Weiss, Andrew A., 1991. "Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation," Econometric Theory, Cambridge University Press, vol. 7(1), pages 46-68, March.
    25. Juan Carlos Escanciano & Zaichao Du, 2015. "Backtesting Expected Shortfall: Accounting for Tail Risk," CAEPR Working Papers 2015-001, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    26. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    27. Potscher, Benedikt M & Prucha, Ingmar R, 1989. "A Uniform Law of Large Numbers for Dependent and Heterogeneous Data Processes," Econometrica, Econometric Society, vol. 57(3), pages 675-683, May.
    28. Richard Gerlach & Cathy W. S. Chen, 2015. "Bayesian Expected Shortfall Forecasting Incorporating the Intraday Range," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(1), pages 128-158.
    29. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    30. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    31. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    32. Drew Creal & Siem Jan Koopman & André Lucas & Marcin Zamojski, 2015. "Generalized Autoregressive Method of Moments," Tinbergen Institute Discussion Papers 15-138/III, Tinbergen Institute, revised 06 Jul 2018.
    33. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
    34. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    35. Zaichao Du & Juan Carlos Escanciano, 2017. "Backtesting Expected Shortfall: Accounting for Tail Risk," Management Science, INFORMS, vol. 63(4), pages 940-958, April.
    36. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    37. Richard Gerlach & Cathy W. S. Chen, 2016. "Bayesian Expected Shortfall Forecasting Incorporating the Intraday Range," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 128-158.
    38. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    39. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    40. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    2. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).
    3. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    4. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    5. Sebastian Bayer & Timo Dimitriadis, 2022. "Regression-Based Expected Shortfall Backtesting [Backtesting Expected Shortfall]," Journal of Financial Econometrics, Oxford University Press, vol. 20(3), pages 437-471.
    6. Luca Merlo & Lea Petrella & Valentina Raponi, 2021. "Forecasting VaR and ES using a joint quantile regression and implications in portfolio allocation," Papers 2106.06518, arXiv.org.
    7. Taylor, James W., 2022. "Forecasting Value at Risk and expected shortfall using a model with a dynamic omega ratio," Journal of Banking & Finance, Elsevier, vol. 140(C).
    8. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    9. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    10. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    11. Catania, Leopoldo & Grassi, Stefano, 2022. "Forecasting cryptocurrency volatility," International Journal of Forecasting, Elsevier, vol. 38(3), pages 878-894.
    12. Storti, Giuseppe & Wang, Chao, 2022. "Nonparametric expected shortfall forecasting incorporating weighted quantiles," International Journal of Forecasting, Elsevier, vol. 38(1), pages 224-239.
    13. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
    14. Timo Dimitriadis & Julie Schnaitmann, 2019. "Forecast Encompassing Tests for the Expected Shortfall," Papers 1908.04569, arXiv.org, revised Aug 2020.
    15. Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2020. "The Efficiency Gap," Papers 2010.14146, arXiv.org, revised Sep 2022.
    16. Lu Yang & Shigeyuki Hamori, 2020. "Forecasts of Value-at-Risk and Expected Shortfall in the Crude Oil Market: A Wavelet-Based Semiparametric Approach," Energies, MDPI, vol. 13(14), pages 1-27, July.
    17. Owusu Junior, Peterson & Alagidede, Imhotep, 2020. "Risks in emerging markets equities: Time-varying versus spatial risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    18. Richard Gerlach & Chao Wang, 2016. "Bayesian Semi-parametric Realized-CARE Models for Tail Risk Forecasting Incorporating Realized Measures," Papers 1612.08488, arXiv.org.
    19. Owusu Junior, Peterson & Tiwari, Aviral Kumar & Tweneboah, George & Asafo-Adjei, Emmanuel, 2022. "GAS and GARCH based value-at-risk modeling of precious metals," Resources Policy, Elsevier, vol. 75(C).
    20. Gordy, Michael B. & McNeil, Alexander J., 2020. "Spectral backtests of forecast distributions with application to risk management," Journal of Banking & Finance, Elsevier, vol. 116(C).

    More about this item

    Keywords

    Risk management; Tails; Crashes; Forecasting; Generalized autoregressive score;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:211:y:2019:i:2:p:388-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.