IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v14y2016i1p128-158..html
   My bibliography  Save this article

Bayesian Expected Shortfall Forecasting Incorporating the Intraday Range

Author

Listed:
  • Richard Gerlach
  • Cathy W. S. Chen

Abstract

Intraday sources of data have proved to be effective for dynamic volatility and tail risk estimation. Expected shortfall (ES) is a tail risk measure, which is now recommended by the Basel Committee, involving a conditional expectation that can be semi-parametrically estimated via an asymmetric sum of squares function. The conditional autoregressive expectile class of model, used to implicitly model ES, is generalized to incorporate information on the intraday range. An asymmetric Gaussian density model error formulation allows a likelihood to be developed that leads to direct estimation and one-step-ahead forecasts of expectiles and, subsequently, of ES. Adaptive Markov chain Monte Carlo sampling schemes are employed for estimation, while their performance is assessed via a simulation study. The proposed models compare favorably with a large range of competitors in an empirical study forecasting seven financial return series over a 10-year period.

Suggested Citation

  • Richard Gerlach & Cathy W. S. Chen, 2016. "Bayesian Expected Shortfall Forecasting Incorporating the Intraday Range," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 128-158.
  • Handle: RePEc:oup:jfinec:v:14:y:2016:i:1:p:128-158.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbu022
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    2. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    3. Kim, Dongwhan & Kang, Kyu Ho, 2021. "Conditional value-at-risk forecasts of an optimal foreign currency portfolio," International Journal of Forecasting, Elsevier, vol. 37(2), pages 838-861.
    4. Cathy W. S. Chen & Edward M. H. Lin & Tara F. J. Huang, 2022. "Bayesian quantile forecasting via the realized hysteretic GARCH model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1317-1337, November.
    5. Cathy W.S. Chen & Toshiaki Watanabe, 2019. "Bayesian modeling and forecasting of Value‐at‐Risk via threshold realized volatility," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(3), pages 747-765, May.
    6. Chao Wang & Richard Gerlach & Qian Chen, 2018. "A Semi-parametric Realized Joint Value-at-Risk and Expected Shortfall Regression Framework," Papers 1807.02422, arXiv.org, revised Jan 2021.
    7. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
    8. Richard Gerlach & Chao Wang, 2016. "Bayesian Semi-parametric Realized-CARE Models for Tail Risk Forecasting Incorporating Realized Measures," Papers 1612.08488, arXiv.org.
    9. Richard Gerlach & Chao Wang, 2018. "Semi-parametric Dynamic Asymmetric Laplace Models for Tail Risk Forecasting, Incorporating Realized Measures," Papers 1805.08653, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:14:y:2016:i:1:p:128-158.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.