IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3700-d386267.html
   My bibliography  Save this article

Forecasts of Value-at-Risk and Expected Shortfall in the Crude Oil Market: A Wavelet-Based Semiparametric Approach

Author

Listed:
  • Lu Yang

    (College of Economics, Shenzhen University, 3688 Nanhai Avenue, Nanshan district, Shenzhen 518060, Guangdong, China)

  • Shigeyuki Hamori

    (Graduate School of Economics, Kobe University, 2-1, Rokkodai, Nada-Ku, Kobe 657-8501, Japan)

Abstract

We propose the use of wavelet-based semiparametric models for forecasting the value-at-risk (VaR) and expected shortfall (ES) in the crude oil market. We compared the forecast outcomes across different time scales for three semiparametric models, three nonparametric, distribution-based, generalized, autoregressive, conditional, heteroskedasticity (GARCH) models, and three rolling-window models. We found that the GARCH model estimated by the Fissler and Ziegel (FZ) zero loss minimization (GARCH-FZ) model performs the best at forecasting the VaR and ES in the short term, whereas the hybrid model performs the best for mid- and long-term time scales. Thus, long-term investors should consider the hybrid model and short-term investors should employ the GARCH-FZ model in their risk management processes. Overall, our proposed wavelet-based semiparametric models outperform the other models tested for all time scales and market conditions. As such, we suggest that these models are considered for the management of crude oil price risk and in the development of energy policy.

Suggested Citation

  • Lu Yang & Shigeyuki Hamori, 2020. "Forecasts of Value-at-Risk and Expected Shortfall in the Crude Oil Market: A Wavelet-Based Semiparametric Approach," Energies, MDPI, vol. 13(14), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3700-:d:386267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
    2. Fan, Ying & Zhang, Yue-Jun & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Estimating 'Value at Risk' of crude oil price and its spillover effect using the GED-GARCH approach," Energy Economics, Elsevier, vol. 30(6), pages 3156-3171, November.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    5. Lyu, Yongjian & Wang, Peng & Wei, Yu & Ke, Rui, 2017. "Forecasting the VaR of crude oil market: Do alternative distributions help?," Energy Economics, Elsevier, vol. 66(C), pages 523-534.
    6. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    7. Wen, Danyan & Wang, Gang-Jin & Ma, Chaoqun & Wang, Yudong, 2019. "Risk spillovers between oil and stock markets: A VAR for VaR analysis," Energy Economics, Elsevier, vol. 80(C), pages 524-535.
    8. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    9. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    10. David Cabedo, J. & Moya, Ismael, 2003. "Estimating oil price 'Value at Risk' using the historical simulation approach," Energy Economics, Elsevier, vol. 25(3), pages 239-253, May.
    11. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    12. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    13. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    14. Costello, Alexandra & Asem, Ebenezer & Gardner, Eldon, 2008. "Comparison of historically simulated VaR: Evidence from oil prices," Energy Economics, Elsevier, vol. 30(5), pages 2154-2166, September.
    15. Cifter, Atilla, 2011. "Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2356-2367.
    16. Tolikas, Konstantinos, 2014. "Unexpected tails in risk measurement: Some international evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 476-493.
    17. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    18. Hammoudeh, Shawkat & Araújo Santos, Paulo & Al-Hassan, Abdullah, 2013. "Downside risk management and VaR-based optimal portfolios for precious metals, oil and stocks," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 318-334.
    19. Youssef, Manel & Belkacem, Lotfi & Mokni, Khaled, 2015. "Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach," Energy Economics, Elsevier, vol. 51(C), pages 99-110.
    20. Zhou, Xing-cai & Lin, Jin-guan, 2013. "Asymptotic properties of wavelet estimators in semiparametric regression models under dependent errors," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 251-270.
    21. Peng, Wei & Hu, Shichao & Chen, Wang & Zeng, Yu-feng & Yang, Lu, 2019. "Modeling the joint dynamic value at risk of the volatility index, oil price, and exchange rate," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 137-149.
    22. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    23. Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
    24. Zhao, Lu-Tao & Liu, Kun & Duan, Xin-Lei & Li, Ming-Fang, 2019. "Oil price risk evaluation using a novel hybrid model based on time-varying long memory," Energy Economics, Elsevier, vol. 81(C), pages 70-78.
    25. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    26. Parker, Steven & Bhatti, M. Ishaq, 2020. "Dynamics and drivers of per capita CO2 emissions in Asia," Energy Economics, Elsevier, vol. 89(C).
    27. Yang, Lu & Yang, Lei & Ho, Kung-Cheng & Hamori, Shigeyuki, 2020. "Dependence structures and risk spillover in China’s credit bond market: A copula and CoVaR approach," Journal of Asian Economics, Elsevier, vol. 68(C).
    28. Boubaker, Heni & Sghaier, Nadia, 2015. "Semiparametric generalized long-memory modeling of some mena stock market returns: A wavelet approach," Economic Modelling, Elsevier, vol. 50(C), pages 254-265.
    29. Fernandez, Viviana, 2006. "The CAPM and value at risk at different time-scales," International Review of Financial Analysis, Elsevier, vol. 15(3), pages 203-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alkathery, Mohammed A. & Chaudhuri, Kausik & Nasir, Muhammad Ali, 2022. "Implications of clean energy, oil and emissions pricing for the GCC energy sector stock," Energy Economics, Elsevier, vol. 112(C).
    2. Mensi, Walid & Rehman, Mobeen Ur & Maitra, Debasish & Al-Yahyaee, Khamis Hamed & Vo, Xuan Vinh, 2021. "Oil, natural gas and BRICS stock markets: Evidence of systemic risks and co-movements in the time-frequency domain," Resources Policy, Elsevier, vol. 72(C).
    3. Michał Woźniak & Marcin Chlebus, 2021. "HCR & HCR-GARCH – novel statistical learning models for Value at Risk estimation," Working Papers 2021-10, Faculty of Economic Sciences, University of Warsaw.
    4. Yanqiong Liu & Zhenghui Li & Yanyan Yao & Hao Dong, 2021. "Asymmetry of Risk Evolution in Crude Oil Market: From the Perspective of Dual Attributes of Oil," Energies, MDPI, vol. 14(13), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyu, Yongjian & Wang, Peng & Wei, Yu & Ke, Rui, 2017. "Forecasting the VaR of crude oil market: Do alternative distributions help?," Energy Economics, Elsevier, vol. 66(C), pages 523-534.
    2. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    3. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    4. Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
    5. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    6. Catania, Leopoldo & Grassi, Stefano, 2022. "Forecasting cryptocurrency volatility," International Journal of Forecasting, Elsevier, vol. 38(3), pages 878-894.
    7. Patra, Saswat, 2021. "Revisiting value-at-risk and expected shortfall in oil markets under structural breaks: The role of fat-tailed distributions," Energy Economics, Elsevier, vol. 101(C).
    8. Halkos, George & Tsirivis, Apostolos, 2019. "Using Value-at-Risk for effective energy portfolio risk management," MPRA Paper 91674, University Library of Munich, Germany.
    9. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    10. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    11. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    12. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    13. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    14. Laporta, Alessandro G. & Merlo, Luca & Petrella, Lea, 2018. "Selection of Value at Risk Models for Energy Commodities," Energy Economics, Elsevier, vol. 74(C), pages 628-643.
    15. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Value-at-risk methodologies for effective energy portfolio risk management," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 197-212.
    16. Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2019. "Quantifying Risk in Traditional Energy and Sustainable Investments," Sustainability, MDPI, vol. 11(3), pages 1-22, January.
    17. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
    18. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    19. Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Energy Economics, Elsevier, vol. 79(C), pages 111-129.
    20. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3700-:d:386267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.