IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v18y2011i4p765-778.html
   My bibliography  Save this article

Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions

Author

Listed:
  • Zhu, Dongming
  • Galbraith, John W.

Abstract

Financial returns typically display heavy tails and some degree of skewness, and conditional variance models with these features often outperform more limited models. The difference in performance may be especially important in estimating quantities that depend on tail features, including risk measures such as the expected shortfall. Here, using recent generalizations of the asymmetric Student-t and exponential power distributions to allow separate parameters to control skewness and the thickness of each tail, we fit daily financial return volatility and forecast expected shortfall for the S&P 500 index and a number of individual company stocks; the generalized distributions are used for the standardized innovations in a nonlinear, asymmetric GARCH-type model. The results provide evidence for the usefulness of the general distributions in improving fit and prediction of downside market risk of financial assets. Constrained versions, corresponding with distributions used in the previous literature, are also estimated in order to provide a comparison of the performance of different conditional distributions.

Suggested Citation

  • Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
  • Handle: RePEc:eee:empfin:v:18:y:2011:i:4:p:765-778
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539811000296
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James W. Taylor, 2008. "Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(3), pages 382-406, Summer.
    2. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(4), pages 540-582, Fall.
    3. Rombouts Jeroen V. K. & Bouaddi Mohammed, 2009. "Mixed Exponential Power Asymmetric Conditional Heteroskedasticity," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-32, May.
    4. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    5. Ivana Komunjer, 2007. "Asymmetric power distribution: Theory and applications to risk measurement," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 891-921.
    6. Dima Alberg & Haim Shalit & Rami Yosef, 2008. "Estimating stock market volatility using asymmetric GARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 18(15), pages 1201-1208.
    7. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    8. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(2), pages 275-309.
    9. M. C. Jones & M. J. Faddy, 2003. "A skew extension of the "t"-distribution, with applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 159-174.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Luc Bauwens & Sébastien Laurent, 2002. "A New Class of Multivariate skew Densities, with Application to GARCH Models," Computing in Economics and Finance 2002 5, Society for Computational Economics.
    12. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    13. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
    14. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    15. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    16. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    17. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    18. Jushan Bai, 2003. "Testing Parametric Conditional Distributions of Dynamic Models," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 531-549, August.
    19. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    20. Mittnik, Stefan & Paolella, Marc S., 2003. "Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions," CFS Working Paper Series 2003/04, Center for Financial Studies (CFS).
    21. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:bla:jtsera:v:38:y:2017:i:2:p:175-190 is not listed on IDEAS
    2. repec:eee:eneeco:v:66:y:2017:i:c:p:523-534 is not listed on IDEAS
    3. Genya Kobayashi, 2016. "Skew exponential power stochastic volatility model for analysis of skewness, non-normal tails, quantiles and expectiles," Computational Statistics, Springer, vol. 31(1), pages 49-88, March.
    4. Shi, Yanlin & Ho, Kin-Yip, 2015. "Modeling high-frequency volatility with three-state FIGARCH models," Economic Modelling, Elsevier, vol. 51(C), pages 473-483.
    5. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
    6. Sorwar, Ghulam & Pappas, Vasileios & Pereira, John & Nurullah, Mohamed, 2016. "To debt or not to debt: Are Islamic banks less risky than conventional banks?," Journal of Economic Behavior & Organization, Elsevier, vol. 132(S), pages 113-126.
    7. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2013. "Pair Copula Construction based Expected Shortfall estimation," Economics Bulletin, AccessEcon, vol. 33(2), pages 1067-1072.
    8. Andrew Harvey & Rutger-Jan Lange, 2015. "Volatility Modeling with a Generalized t-distribution," Cambridge Working Papers in Economics 1517, Faculty of Economics, University of Cambridge.
    9. Andrew J. Patton & Johanna F. Ziegel & Rui Chen, 2017. "Dynamic Semiparametric Models for Expected Shortfall (and Value-at-Risk)," Papers 1707.05108, arXiv.org.
    10. Gao, Chun-Ting & Zhou, Xiao-Hua, 2016. "Forecasting VaR and ES using dynamic conditional score models and skew Student distribution," Economic Modelling, Elsevier, vol. 53(C), pages 216-223.
    11. Saralees Nadarajah & Emmanuel Afuecheta & Stephen Chan, 2015. "GARCH modeling of five popular commodities," Empirical Economics, Springer, vol. 48(4), pages 1691-1712, June.
    12. Nadarajah, Saralees & Chan, Stephen & Afuecheta, Emmanuel, 2013. "On the characteristic function for asymmetric Student t distributions," Economics Letters, Elsevier, vol. 121(2), pages 271-274.
    13. Adcock, C J & Meade, N, 2017. "Using parametric classification trees for model selection with applications to financial risk management," European Journal of Operational Research, Elsevier, vol. 259(2), pages 746-765.
    14. Rubio, Francisco Javier & Steel, Mark F. J., 2014. "Bayesian modelling of skewness and kurtosis with two-piece scale and shape transformations," MPRA Paper 57102, University Library of Munich, Germany.
    15. Baker, Rose, 2017. "Creating new distributions by blunting cusps," Statistics & Probability Letters, Elsevier, vol. 124(C), pages 55-63.
    16. Michele Caivano & Andrew Harvey & Alessandra Luati, 2016. "Robust time series models with trend and seasonal components," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 99-120, March.
    17. Shi, Yanlin & Feng, Lingbing, 2016. "A discussion on the innovation distribution of the Markov regime-switching GARCH model," Economic Modelling, Elsevier, vol. 53(C), pages 278-288.
    18. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:18:y:2011:i:4:p:765-778. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.