IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v15y2015i6p1013-1030.html
   My bibliography  Save this article

Two-step methods in VaR prediction and the importance of fat tails

Author

Listed:
  • Ibrahim Ergen

Abstract

This paper proposes a two-step methodology for Value-at-Risk prediction. The first step involves estimation of a GARCH model using quasi-maximum likelihood estimation and the second step uses model filtered returns with the skewed t distribution of Azzalini and Capitanio [ J. R. Stat. Soc. B , 2003, 65 , 367-389]. The predictive performance of this method is compared to the single-step joint estimation of the same data generating process, to the well-known GARCH-Evt model and to a comprehensive set of other market risk models. Backtesting results show that the proposed two-step method outperforms most benchmarks including the classical joint estimation method of same data generating process and it performs competitively with respect to the GARCH-Evt model. This paper recommends two robust models to risk managers of emerging market stock portfolios. Both models are estimated in two steps: the GJR-GARCH-Evt model and the two-step GARCH-St model proposed in this study.

Suggested Citation

  • Ibrahim Ergen, 2015. "Two-step methods in VaR prediction and the importance of fat tails," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1013-1030, June.
  • Handle: RePEc:taf:quantf:v:15:y:2015:i:6:p:1013-1030
    DOI: 10.1080/14697688.2014.942230
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2014.942230
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2014.942230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    2. Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
    3. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    4. Turan G. Bali & Panayiotis Theodossiou, 2008. "Risk Measurement Performance of Alternative Distribution Functions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 411-437, June.
    5. Bhattacharyya, Malay & Chaudhary, Abhishek & Yadav, Gaurav, 2008. "Conditional VaR estimation using Pearson's type IV distribution," European Journal of Operational Research, Elsevier, vol. 191(2), pages 386-397, December.
    6. Dolores Furió & Francisco J. Climent, 2013. "Extreme value theory versus traditional GARCH approaches applied to financial data: a comparative evaluation," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 45-63, January.
    7. Turan G. Bali, 2007. "An Extreme Value Approach to Estimating Interest-Rate Volatility: Pricing Implications for Interest-Rate Options," Management Science, INFORMS, vol. 53(2), pages 323-339, February.
    8. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    9. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
    10. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    13. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(2), pages 275-309.
    14. Turan G. Bali, 2003. "An Extreme Value Approach to Estimating Volatility and Value at Risk," The Journal of Business, University of Chicago Press, vol. 76(1), pages 83-108, January.
    15. Mabrouk, Samir & Saadi, Samir, 2012. "Parametric Value-at-Risk analysis: Evidence from stock indices," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(3), pages 305-321.
    16. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    17. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    18. Assaf, A., 2009. "Extreme observations and risk assessment in the equity markets of MENA region: Tail measures and Value-at-Risk," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 109-116, June.
    19. Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
    20. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(1), pages 29-52, March.
    21. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    22. Pritsker, Matthew, 2006. "The hidden dangers of historical simulation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 561-582, February.
    23. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    24. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    25. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    26. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    27. Fernandez, Viviana, 2005. "Risk management under extreme events," International Review of Financial Analysis, Elsevier, vol. 14(2), pages 113-148.
    28. Malay Bhattacharyya & Nityanand Misra & Bharat Kodase, 2009. "MaxVaR for non-normal and heteroskedastic returns," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 925-935.
    29. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    30. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
    2. Hibiki Kaibuchi & Yoshinori Kawasaki & Gilles Stupfler, 2021. "GARCH-UGH: A bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Papers 2104.09879, arXiv.org.
    3. Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2017. "Risk quantification in turmoil markets," Risk Management, Palgrave Macmillan, vol. 19(3), pages 202-224, August.
    4. Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting Extreme Value Theory models of expected shortfall," Documentos de Trabajo del ICAE 2019-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    5. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    2. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    4. Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
    5. Adcock, C J & Meade, N, 2017. "Using parametric classification trees for model selection with applications to financial risk management," European Journal of Operational Research, Elsevier, vol. 259(2), pages 746-765.
    6. Karmakar, Madhusudan & Shukla, Girja K., 2015. "Managing extreme risk in some major stock markets: An extreme value approach," International Review of Economics & Finance, Elsevier, vol. 35(C), pages 1-25.
    7. Ruiz, Esther & Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Allen, Linda & Bali, Turan G., 2007. "Cyclicality in catastrophic and operational risk measurements," Journal of Banking & Finance, Elsevier, vol. 31(4), pages 1191-1235, April.
    9. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2014. "Semi-nonparametric VaR forecasts for hedge funds during the recent crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 330-343.
    10. Chen, Qian & Gerlach, Richard & Lu, Zudi, 2012. "Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3498-3516.
    11. Gonzalo Cortazar & Alejandro Bernales & Diether Beuermann, 2005. "Methodology and Implementation of Value-at-Risk Measures in Emerging Fixed-Income Markets with Infrequent Trading," Finance 0512030, University Library of Munich, Germany.
    12. Chrétien, Stéphane & Coggins, Frank, 2010. "Performance and conservatism of monthly FHS VaR: An international investigation," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 323-333, December.
    13. Muhammad Sheraz & Imran Nasir, 2021. "Information-Theoretic Measures and Modeling Stock Market Volatility: A Comparative Approach," Risks, MDPI, Open Access Journal, vol. 9(5), pages 1-20, May.
    14. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    15. Laura Garcia‐Jorcano & Alfonso Novales, 2021. "Volatility specifications versus probability distributions in VaR forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
    16. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    17. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    18. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.
    19. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    20. Su, Jung-Bin, 2014. "Empirical analysis of long memory, leverage, and distribution effects for stock market risk estimates," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 1-39.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:15:y:2015:i:6:p:1013-1030. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.tandfonline.com/RQUF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.