IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v191y2008i2p386-397.html
   My bibliography  Save this article

Conditional VaR estimation using Pearson's type IV distribution

Author

Listed:
  • Bhattacharyya, Malay
  • Chaudhary, Abhishek
  • Yadav, Gaurav

Abstract

This paper presents a new value at risk (VaR) estimation model for equity returns time series and tests it extensively on Stock Indices of 14 countries. Two most important stylized facts of such series are volatility clustering, and non-normality as a result of fat tails of the return distribution. While volatility clustering has been extensively studied using the GARCH model and its various extensions, the phenomenon of non-normality has not been comprehensively explored, at least in the context of VaR estimation. A combination of extreme value theory (EVT) and GARCH has been explored to analyze financial data showing non-normal behavior. This paper proposes a combination of the Pearson's Type IV distribution and the GARCH (1, 1) approach to furnish a new method with superior predictive abilities. The approach is back tested for the entire sample as well as for a holdout sample using rolling windows.

Suggested Citation

  • Bhattacharyya, Malay & Chaudhary, Abhishek & Yadav, Gaurav, 2008. "Conditional VaR estimation using Pearson's type IV distribution," European Journal of Operational Research, Elsevier, vol. 191(2), pages 386-397, December.
  • Handle: RePEc:eee:ejores:v:191:y:2008:i:2:p:386-397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00741-2
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jondeau, Eric & Rockinger, Michael, 2001. "Gram-Charlier densities," Journal of Economic Dynamics and Control, Elsevier, vol. 25(10), pages 1457-1483, October.
    2. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    5. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    6. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    7. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
    8. Bera, Anil K & Higgins, Matthew L, 1993. " ARCH Models: Properties, Estimation and Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 7(4), pages 305-366, December.
    9. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    10. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    11. McCurdy, Thomas H & Morgan, Ieuan G, 1988. "Testing the Martingale Hypothesis in Deutsche Mark Futures with Models Specifying the Form of Heteroscedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(3), pages 187-202, July-Sept.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhattacharyya, Malay & Madhav R, Siddarth, 2012. "A Comparison of VaR Estimation Procedures for Leptokurtic Equity Index Returns," MPRA Paper 54189, University Library of Munich, Germany.
    2. Stavros Stavroyiannis & Leonidas Zarangas, 2013. "Out of Sample Value-at-Risk and Backtesting with the Standardized Pearson Type-IV Skewed Distribution," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 60(2), pages 231-247, April.
    3. Adcock, C J & Meade, N, 2017. "Using parametric classification trees for model selection with applications to financial risk management," European Journal of Operational Research, Elsevier, vol. 259(2), pages 746-765.
    4. Ausín, M. Concepción & Galeano, Pedro & Ghosh, Pulak, 2014. "A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation," European Journal of Operational Research, Elsevier, vol. 232(2), pages 350-358.
    5. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    6. Stavros Stavroyiannis, 2016. "Value-at-Risk and backtesting with the APARCH model and the standardized Pearson type IV distribution," Papers 1602.05749, arXiv.org.
    7. Bianchi, Daniele & Guidolin, Massimo, 2014. "Can long-run dynamic optimal strategies outperform fixed-mix portfolios? Evidence from multiple data sets," European Journal of Operational Research, Elsevier, vol. 236(1), pages 160-176.
    8. Basu, Sanjay, 2011. "Comparing simulation models for market risk stress testing," European Journal of Operational Research, Elsevier, vol. 213(1), pages 329-339, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:191:y:2008:i:2:p:386-397. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.