IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws103822.html
   My bibliography  Save this paper

A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation

Author

Listed:
  • Ghosh, Pulak
  • Galeano, Pedro
  • Ausín, Concepción

Abstract

Financial time series analysis deals with the understanding of data collected on financial markets. Several parametric distribution models have been entertained for describing, estimating and predicting the dynamics of financial time series. Alternatively, this article considers a Bayesian semiparametric approach. In particular, the usual parametric distributional assumptions of the GARCH-type models are relaxed by entertaining the class of location-scale mixtures of Gaussian distributions with a Dirichlet process prior on the mixing distribution, leading to a Dirichlet process mixture model. The proposed specification allows for a greater exibility in capturing both the skewness and kurtosis frequently observed in financial returns. The Bayesian model provides statistical inference with finite sample validity. Furthermore, it is also possible to obtain predictive distributions for the Value at Risk (VaR), which has become the most widely used measure of market risk for practitioners. Through a simulation study, we demonstrate the performance of the proposed semiparametric method and compare results with the ones from a normal distribution assumption. We also demonstrate the superiority of our proposed semiparametric method using real data from the Bombay Stock Exchange Index (BSE-30) and the Hang Seng Index (HSI).

Suggested Citation

  • Ghosh, Pulak & Galeano, Pedro & Ausín, Concepción, 2010. "A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation," DES - Working Papers. Statistics and Econometrics. WS ws103822, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws103822
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/9283/ws103822.pdf?sequence=1
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models," Biometrika, Biometrika Trust, vol. 95(1), pages 169-186.
    2. Galeano, Pedro & Ausín, M. Concepción, 2010. "The Gaussian Mixture Dynamic Conditional Correlation Model: Parameter Estimation, Value at Risk Calculation, and Portfolio Selection," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 559-571.
    3. Bhattacharyya, Malay & Chaudhary, Abhishek & Yadav, Gaurav, 2008. "Conditional VaR estimation using Pearson's type IV distribution," European Journal of Operational Research, Elsevier, vol. 191(2), pages 386-397, December.
    4. Basu S. & Chib S., 2003. "Marginal Likelihood and Bayes Factors for Dirichlet Process Mixture Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 224-235, January.
    5. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    6. Ausin, Maria Concepcion & Galeano, Pedro, 2007. "Bayesian estimation of the Gaussian mixture GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2636-2652, February.
    7. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika van der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639.
    8. Bai, Xuezheng & Russell, Jeffrey R. & Tiao, George C., 2003. "Kurtosis of GARCH and stochastic volatility models with non-normal innovations," Journal of Econometrics, Elsevier, vol. 114(2), pages 349-360, June.
    9. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. P. Damlen & J. Wakefield & S. Walker, 1999. "Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 331-344.
    12. Ghosh, Pulak & Basu, Sanjib & Tiwari, Ram C., 2009. "Bayesian Analysis of Cancer Rates From SEER Program Using Parametric and Semiparametric Joinpoint Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 439-452.
    13. Damien, Paul & Galenko, Alexander & Popova, Elmira & Hanson, Timothy, 2007. "Bayesian semiparametric analysis for a single item maintenance optimization," European Journal of Operational Research, Elsevier, vol. 182(2), pages 794-805, October.
    14. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    15. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2016. "A Bayesian non-parametric approach to asymmetric dynamic conditional correlation model with application to portfolio selection," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 814-829.
    2. Jensen, Mark J. & Maheu, John M., 2013. "Bayesian semiparametric multivariate GARCH modeling," Journal of Econometrics, Elsevier, vol. 176(1), pages 3-17.
    3. repec:eee:ecmode:v:67:y:2017:i:c:p:203-214 is not listed on IDEAS
    4. Delatola, E.-I. & Griffin, J.E., 2013. "A Bayesian semiparametric model for volatility with a leverage effect," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 97-110.
    5. Audrone Virbickaite & Hedibert F. Lopes & Maria Concepción Ausín & Pedro Galeano, 2018. "Particle Learning for Bayesian Semi-Parametric Stochastic Volatility Model," DEA Working Papers 88, Universitat de les Illes Balears, Departament d'Economía Aplicada.
    6. Yu, Jing-Rung & Chiou, Wan-Jiun Paul & Mu, Da-Ren, 2015. "A linearized value-at-risk model with transaction costs and short selling," European Journal of Operational Research, Elsevier, vol. 247(3), pages 872-878.
    7. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.
    8. Fernández, Arturo J., 2015. "Optimum attributes component test plans for k-out-of-n:F Weibull systems using prior information," European Journal of Operational Research, Elsevier, vol. 240(3), pages 688-696.
    9. Martina Danielova Zaharieva & Mark Trede & Bernd Wilfling, 2017. "Bayesian semiparametric multivariate stochastic volatility with an application to international volatility co-movements," CQE Working Papers 6217, Center for Quantitative Economics (CQE), University of Muenster.
    10. Huang, Yan & Kou, Gang & Peng, Yi, 2017. "Nonlinear manifold learning for early warnings in financial markets," European Journal of Operational Research, Elsevier, vol. 258(2), pages 692-702.

    More about this item

    Keywords

    Bayesian estimation;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws103822. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.