IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v323y2025i1p309-322.html
   My bibliography  Save this article

Predictive distributions and the market return: The role of market illiquidity

Author

Listed:
  • Ellington, Michael
  • Kalli, Maria

Abstract

This paper evaluates the role of volatility-free stock market illiquidity proxies in forecasting monthly stock market returns. We adopt a probabilistic approach to multivariate time-series modelling using Bayesian nonparametric vector autoregressions. These models flexibly capture complex joint dynamics among financial variables through data-driven regime switching. Out-of-sample forecasts maintain accuracy as the horizon increases. Adding illiquidity generates statistical improvements in out-of-sample predictive accuracy. We highlight the operational importance of market illiquidity after selecting the most appropriate forecasting model that delivers profitable strategies that outperform a range of multivariate models; as well as the historical mean.

Suggested Citation

  • Ellington, Michael & Kalli, Maria, 2025. "Predictive distributions and the market return: The role of market illiquidity," European Journal of Operational Research, Elsevier, vol. 323(1), pages 309-322.
  • Handle: RePEc:eee:ejores:v:323:y:2025:i:1:p:309-322
    DOI: 10.1016/j.ejor.2025.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221725000268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2025.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Acharya, Viral V. & Pedersen, Lasse Heje, 2005. "Asset pricing with liquidity risk," Journal of Financial Economics, Elsevier, vol. 77(2), pages 375-410, August.
    2. Martin Lettau & Stijn Van Nieuwerburgh, 2008. "Reconciling the Return Predictability Evidence," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1607-1652, July.
    3. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    4. Markus K. Brunnermeier & Lasse Heje Pedersen, 2009. "Market Liquidity and Funding Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 22(6), pages 2201-2238, June.
    5. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    6. Villani, Mattias & Kohn, Robert & Nott, David J., 2012. "Generalized smooth finite mixtures," Journal of Econometrics, Elsevier, vol. 171(2), pages 121-133.
    7. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    8. Campbell, J.Y. & Shiller, R.J., 1988. "Stock Prices, Earnings And Expected Dividends," Papers 334, Princeton, Department of Economics - Econometric Research Program.
    9. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    10. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    11. Kingsley Y. L. Fong & Craig W. Holden & Charles A. Trzcinka, 2017. "What Are the Best Liquidity Proxies for Global Research?," Review of Finance, European Finance Association, vol. 21(4), pages 1355-1401.
    12. Campbell, John Y, 1991. "A Variance Decomposition for Stock Returns," Economic Journal, Royal Economic Society, vol. 101(405), pages 157-179, March.
    13. Norets, Andriy & Pati, Debdeep, 2017. "Adaptive Bayesian Estimation Of Conditional Densities," Econometric Theory, Cambridge University Press, vol. 33(4), pages 980-1012, August.
    14. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    15. Geert Bekaert & Campbell R. Harvey & Christian Lundblad, 2007. "Liquidity and Expected Returns: Lessons from Emerging Markets," The Review of Financial Studies, Society for Financial Studies, vol. 20(6), pages 1783-1831, November.
    16. John Y. Campbell & Tuomo Vuolteenaho, 2004. "Inflation Illusion and Stock Prices," American Economic Review, American Economic Association, vol. 94(2), pages 19-23, May.
    17. Ellington, Michael, 2022. "Fat tails, serial dependence, and implied volatility index connections," European Journal of Operational Research, Elsevier, vol. 299(2), pages 768-779.
    18. Florackis, Chris & Giorgioni, Gianluigi & Kostakis, Alexandros & Milas, Costas, 2014. "On stock market illiquidity and real-time GDP growth," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 210-229.
    19. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    20. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    21. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689, December.
    22. Geweke, John & Keane, Michael, 2007. "Smoothly mixing regressions," Journal of Econometrics, Elsevier, vol. 138(1), pages 252-290, May.
    23. Ausín, M. Concepción & Galeano, Pedro & Ghosh, Pulak, 2014. "A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation," European Journal of Operational Research, Elsevier, vol. 232(2), pages 350-358.
    24. Martin Lettau & Sydney Ludvigson, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    25. Chen, Yong & Eaton, Gregory W. & Paye, Bradley S., 2018. "Micro(structure) before macro? The predictive power of aggregate illiquidity for stock returns and economic activity," Journal of Financial Economics, Elsevier, vol. 130(1), pages 48-73.
    26. Bart Diris & Franz Palm & Peter Schotman, 2015. "Long-Term Strategic Asset Allocation: An Out-of-Sample Evaluation," Management Science, INFORMS, vol. 61(9), pages 2185-2202, September.
    27. Marco Macchiavelli & Xing (Alex) Zhou, 2022. "Funding Liquidity and Market Liquidity: The Broker-Dealer Perspective," Management Science, INFORMS, vol. 68(5), pages 3379-3398, May.
    28. Ravi Bansal & Dana Kiku & Ivan Shaliastovich & Amir Yaron, 2014. "Volatility, the Macroeconomy, and Asset Prices," Journal of Finance, American Finance Association, vol. 69(6), pages 2471-2511, December.
    29. Ferreira, Miguel A. & Santa-Clara, Pedro, 2011. "Forecasting stock market returns: The sum of the parts is more than the whole," Journal of Financial Economics, Elsevier, vol. 100(3), pages 514-537, June.
    30. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Modeling energy price dynamics: GARCH versus stochastic volatility," Energy Economics, Elsevier, vol. 54(C), pages 182-189.
    31. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    32. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    33. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    34. Francis A. Longstaff, 2004. "The Flight-to-Liquidity Premium in U.S. Treasury Bond Prices," The Journal of Business, University of Chicago Press, vol. 77(3), pages 511-526, July.
    35. Yakov Amihud & Joonki Noh & Andrew Karolyi, 2021. "Illiquidity and Stock Returns II: Cross-section and Time-series Effects [A simple estimation of bid-ask spreads from daily close, high and low prices]," The Review of Financial Studies, Society for Financial Studies, vol. 34(4), pages 2101-2123.
    36. Georg Kaltenbrunner & Lars A. Lochstoer, 2010. "Long-Run Risk through Consumption Smoothing," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3190-3224, August.
    37. repec:bla:jfinan:v:43:y:1988:i:3:p:661-76 is not listed on IDEAS
    38. Qi, Min, 1999. "Nonlinear Predictability of Stock Returns Using Financial and Economic Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 419-429, October.
    39. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    40. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    41. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    42. Yang, Qiao, 2019. "Stock returns and real growth: A Bayesian nonparametric approach," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 53-69.
    43. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    44. Kim, Chang-Jin & Piger, Jeremy & Startz, Richard, 2008. "Estimation of Markov regime-switching regression models with endogenous switching," Journal of Econometrics, Elsevier, vol. 143(2), pages 263-273, April.
    45. Florackis, Chris & Gregoriou, Andros & Kostakis, Alexandros, 2011. "Trading frequency and asset pricing on the London Stock Exchange: Evidence from a new price impact ratio," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3335-3350.
    46. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    47. Xiaoxia Lou & Tao Shu, 2017. "Price Impact or Trading Volume: Why Is the Amihud (2002) Measure Priced?," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4481-4520.
    48. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2000. "Commonality in liquidity," Journal of Financial Economics, Elsevier, vol. 56(1), pages 3-28, April.
    49. Goldstein, Michael A. & A. Kavajecz, Kenneth, 2000. "Eighths, sixteenths, and market depth: changes in tick size and liquidity provision on the NYSE," Journal of Financial Economics, Elsevier, vol. 56(1), pages 125-149, April.
    50. Chen, Jian & Tang, Guohao & Yao, Jiaquan & Zhou, Guofu, 2022. "Investor Attention and Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 57(2), pages 455-484, March.
    51. Huang, Yan & Kou, Gang & Peng, Yi, 2017. "Nonlinear manifold learning for early warnings in financial markets," European Journal of Operational Research, Elsevier, vol. 258(2), pages 692-702.
    52. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    53. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    54. Johnson, Timothy C., 2008. "Volume, liquidity, and liquidity risk," Journal of Financial Economics, Elsevier, vol. 87(2), pages 388-417, February.
    55. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
    56. Michael Johannes & Arthur Korteweg & Nicholas Polson, 2014. "Sequential Learning, Predictability, and Optimal Portfolio Returns," Journal of Finance, American Finance Association, vol. 69(2), pages 611-644, April.
    57. Kalli, Maria & Griffin, Jim E., 2018. "Bayesian nonparametric vector autoregressive models," Journal of Econometrics, Elsevier, vol. 203(2), pages 267-282.
    58. Mark J. Jensen & John M. Maheu, 2018. "Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis," JRFM, MDPI, vol. 11(3), pages 1-29, September.
    59. Kalimipalli, Madhu & Nayak, Subhankar, 2012. "Idiosyncratic volatility vs. liquidity? Evidence from the US corporate bond market," Journal of Financial Intermediation, Elsevier, vol. 21(2), pages 217-242.
    60. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    61. Randi Næs & Johannes A. Skjeltorp & Bernt Arne Ødegaard, 2011. "Stock Market Liquidity and the Business Cycle," Journal of Finance, American Finance Association, vol. 66(1), pages 139-176, February.
    62. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2019. "Regime switching dynamic correlations for asymmetric and fat-tailed conditional returns," Journal of Econometrics, Elsevier, vol. 213(2), pages 493-515.
    63. Marco Del Negro & Giorgio E. Primiceri, 2015. "Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1342-1345.
    64. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    65. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    66. Goyenko, Ruslan Y. & Holden, Craig W. & Trzcinka, Charles A., 2009. "Do liquidity measures measure liquidity?," Journal of Financial Economics, Elsevier, vol. 92(2), pages 153-181, May.
    67. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    68. repec:oup:rfinst:v:21:y:2017:i:4:p:1355-1401. is not listed on IDEAS
    69. Ellington, Michael, 2018. "Financial market illiquidity shocks and macroeconomic dynamics: Evidence from the UK," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 225-236.
    70. Sean Crockett & John Duffy & Yehuda Izhakian, 2019. "An Experimental Test of the Lucas Asset Pricing Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(2), pages 627-667.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yong & Eaton, Gregory W. & Paye, Bradley S., 2018. "Micro(structure) before macro? The predictive power of aggregate illiquidity for stock returns and economic activity," Journal of Financial Economics, Elsevier, vol. 130(1), pages 48-73.
    2. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    3. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    4. Baruník, Jozef & Ellington, Michael, 2024. "Persistence in financial connectedness and systemic risk," European Journal of Operational Research, Elsevier, vol. 314(1), pages 393-407.
    5. Ellington, Michael, 2018. "Financial market illiquidity shocks and macroeconomic dynamics: Evidence from the UK," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 225-236.
    6. Hollstein, Fabian & Prokopczuk, Marcel & Tharann, Björn & Wese Simen, Chardin, 2025. "Predicting the equity premium around the globe: Comprehensive evidence from a large sample," International Journal of Forecasting, Elsevier, vol. 41(1), pages 208-228.
    7. Ellington, Michael & Fu, Xi & Zhu, Yunyi, 2023. "Real estate illiquidity and returns: A time-varying regional perspective," International Journal of Forecasting, Elsevier, vol. 39(1), pages 58-72.
    8. Lin, Hai & Wang, Junbo & Wu, Chunchi, 2014. "Predictions of corporate bond excess returns," Journal of Financial Markets, Elsevier, vol. 21(C), pages 123-152.
    9. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    10. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    11. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    12. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
    13. Maio, Paulo & Xu, Danielle, 2020. "Cash-flow or return predictability at long horizons? The case of earnings yield," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 172-192.
    14. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.
    15. Baetje, Fabian & Menkhoff, Lukas, 2016. "Equity premium prediction: Are economic and technical indicators unstable?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
    16. Ellington, Michael & Florackis, Chris & Milas, Costas, 2017. "Liquidity shocks and real GDP growth: Evidence from a Bayesian time-varying parameter VAR," Journal of International Money and Finance, Elsevier, vol. 72(C), pages 93-117.
    17. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    18. Lof, Matthijs & Nyberg, Henri, 2024. "Discount rates and cash flows: A local projection approach," Journal of Banking & Finance, Elsevier, vol. 162(C).
    19. Farag, Hisham & Luo, Di & Yarovaya, Larisa & Zieba, Damian, 2025. "Returns from liquidity provision in cryptocurrency markets," Journal of Banking & Finance, Elsevier, vol. 175(C).
    20. Zhu, Xiaoneng & Zhu, Jie, 2013. "Predicting stock returns: A regime-switching combination approach and economic links," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4120-4133.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:323:y:2025:i:1:p:309-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.