IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

A Bayesian semiparametric model for volatility with a leverage effect

  • Delatola, E.-I.
  • Griffin, J.E.

A Bayesian semiparametric stochastic volatility model for financial data is developed. This nonparametrically estimates the return distribution from the data allowing for stylized facts such as heavy tails of the distribution of returns whilst also allowing for correlation between the returns and changes in volatility, which is usually termed the leverage effect. An efficient MCMC algorithm is described for inference. The model is applied to simulated data and two real data sets. The results of fitting the model to these data show that choosing a parametric return distribution can have a substantial effect on inference about the leverage effect.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S016794731200391X
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 60 (2013)
Issue (Month): C ()
Pages: 97-110

as
in new window

Handle: RePEc:eee:csdana:v:60:y:2013:i:c:p:97-110
Contact details of provider: Web page: http://www.elsevier.com/locate/csda

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Mark J Jensen & John M Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," Working Papers tecipa-314, University of Toronto, Department of Economics.
  2. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
  3. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
  4. Ausín, M. Concepción & Galeano, Pedro & Ghosh, Pulak, 2014. "A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation," European Journal of Operational Research, Elsevier, vol. 232(2), pages 350-358.
  5. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
  6. Cees Diks & Valentyn Panchenko & Dick Van Dijk, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Post-Print hal-00834423, HAL.
  7. repec:hal:journl:peer-00834423 is not listed on IDEAS
  8. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
  9. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-34, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:60:y:2013:i:c:p:97-110. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.