IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

A Bayesian Non-Parametric Approach to Asymmetric Dynamic Conditional Correlation Model With Application to Portfolio Selection

Listed author(s):
  • Audrone Virbickaite
  • M. Concepci\'on Aus\'in
  • Pedro Galeano

We propose a Bayesian non-parametric approach for modeling the distribution of multiple returns. In particular, we use an asymmetric dynamic conditional correlation (ADCC) model to estimate the time-varying correlations of financial returns where the individual volatilities are driven by GJR-GARCH models. The ADCC-GJR-GARCH model takes into consideration the asymmetries in individual assets' volatilities, as well as in the correlations. The errors are modeled using a Dirichlet location-scale mixture of multivariate Gaussian distributions allowing for a great flexibility in the return distribution in terms of skewness and kurtosis. Model estimation and prediction are developed using MCMC methods based on slice sampling techniques. We carry out a simulation study to illustrate the flexibility of the proposed approach. We find that the proposed DPM model is able to adapt to several frequently used distribution models and also accurately estimates the posterior distribution of the volatilities of the returns, without assuming any underlying distribution. Finally, we present a financial application using Apple and NASDAQ Industrial index data to solve a portfolio allocation problem. We find that imposing a restrictive parametric distribution can result into underestimation of the portfolio variance, whereas DPM model is able to overcome this problem.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://arxiv.org/pdf/1301.5129
File Function: Latest version
Download Restriction: no

Paper provided by arXiv.org in its series Papers with number 1301.5129.

as
in new window

Length:
Date of creation: Jan 2013
Date of revision: Jan 2014
Handle: RePEc:arx:papers:1301.5129
Contact details of provider: Web page: http://arxiv.org/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, 03.
  2. Christodoulakis, George A. & Satchell, Stephen E., 2002. "Correlated ARCH (CorrARCH): Modelling the time-varying conditional correlation between financial asset returns," European Journal of Operational Research, Elsevier, vol. 139(2), pages 351-370, June.
  3. Jensen, Mark J. & Maheu, John M., 2014. "Estimating a semiparametric asymmetric stochastic volatility model with a Dirichlet process mixture," Journal of Econometrics, Elsevier, vol. 178(P3), pages 523-538.
  4. Mark J Jensen & John M Maheu, 2012. "Bayesian semiparametric multivariate GARCH modeling," Working Papers tecipa-458, University of Toronto, Department of Economics.
  5. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(04), pages 535-551, December.
  6. Sheppard, Kevin & Cappiello, Lorenzo & Engle, Robert F., 2003. "Asymmetric dynamics in the correlations of global equity and bond returns," Working Paper Series 0204, European Central Bank.
  7. Bauwens, Luc & Laurent, Sebastien, 2005. "A New Class of Multivariate Skew Densities, With Application to Generalized Autoregressive Conditional Heteroscedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 346-354, July.
  8. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
  9. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  10. Rossi, Eduardo & Spazzini, Filippo, 2008. "Model and distribution uncertainty in multivariate GARCH estimation: a Monte Carlo analysis," MPRA Paper 12260, University Library of Munich, Germany.
  11. Greyserman, Alex & Jones, Douglas H. & Strawderman, William E., 2006. "Portfolio selection using hierarchical Bayesian analysis and MCMC methods," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 669-678, February.
  12. Wenling Yang & David E. Allen, 2005. "Multivariate GARCH hedge ratios and hedging effectiveness in Australian futures markets," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 45(2), pages 301-321.
  13. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen VK, "undated". "Multivariate GARCH models: a survey," CORE Discussion Papers RP 1847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  14. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
  15. Daniel B. Nelson, 1994. "Asymptotically Optimal Smoothing with ARCH Models," NBER Technical Working Papers 0161, National Bureau of Economic Research, Inc.
  16. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
  17. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  18. Mark J. Jensen & John M. Maheu, 2009. "Bayesian Semiparametric Stochastic Volatility Modeling," Working Paper Series 23_09, The Rimini Centre for Economic Analysis.
  19. Ausin, Maria Concepcion & Galeano, Pedro, 2007. "Bayesian estimation of the Gaussian mixture GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2636-2652, February.
  20. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
  21. Stephen G. Cecchetti & Robert E. Cumby & Stephen Figlewski, 1986. "Estimation of the optimal futures hedge," Research Working Paper 86-10, Federal Reserve Bank of Kansas City.
  22. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
  23. Delatola, E.-I. & Griffin, J.E., 2013. "A Bayesian semiparametric model for volatility with a leverage effect," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 97-110.
  24. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(03), pages 279-292, September.
  25. Fiorentini, Gabriele & Sentana, Enrique & Calzolari, Giorgio, 2003. "Maximum Likelihood Estimation and Inference in Multivariate Conditionally Heteroscedastic Dynamic Regression Models with Student t Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 532-546, October.
  26. Doron Avramov & Guofu Zhou, 2010. "Bayesian Portfolio Analysis," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 25-47, December.
  27. Ghosh, Pulak & Galeano, Pedro & Ausín, Concepción, 2010. "A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation," DES - Working Papers. Statistics and Econometrics. WS ws103822, Universidad Carlos III de Madrid. Departamento de Estadística.
  28. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
  29. Hun Y. Park & Anil K. Bera, 1987. "Interest-Rate Volatility, Basis Risk and Heteroscedasticity in Hedging Mortgages," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 15(2), pages 79-97.
  30. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  31. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  32. Eduardo Rossi & Claudio Zucca, 2002. "Hedging interest rate risk with multivariate GARCH," Applied Financial Economics, Taylor & Francis Journals, vol. 12(4), pages 241-251.
  33. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(04), pages 1851-1872, September.
  34. Giamouridis, Daniel & Vrontos, Ioannis D., 2007. "Hedge fund portfolio construction: A comparison of static and dynamic approaches," Journal of Banking & Finance, Elsevier, vol. 31(1), pages 199-217, January.
  35. Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models," Biometrika, Biometrika Trust, vol. 95(1), pages 169-186.
  36. Galeano, Pedro & Ausín, M. Concepción, 2010. "The Gaussian Mixture Dynamic Conditional Correlation Model: Parameter Estimation, Value at Risk Calculation, and Portfolio Selection," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 559-571.
  37. Maria Kalli & Stephen G. Walker & Paul Damien, 2013. "Modeling the Conditional Distribution of Daily Stock Index Returns: An Alternative Bayesian Semiparametric Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 371-383, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1301.5129. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.