IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v28y2009i6p612-631.html
   My bibliography  Save this article

A Generalized Dynamic Conditional Correlation Model: Simulation and Application to Many Assets

Author

Listed:
  • Christian Hafner
  • Philip Hans Franses

Abstract

In this article, we put forward a generalization of the Dynamic Conditional Correlation (DCC) Model of Engle (2002). Our model allows for asset-specific correlation sensitivities, which is useful in particular if one aims to summarize a large number of asset returns. We propose two estimation methods, one based on a full likelihood maximization, the other on individual correlation estimates. The resultant generalized DCC (GDCC) model is considered for daily data on 39 U.K. stock returns in the FTSE. We find convincing evidence that the GDCC model improves on the DCC model and also on the CCC model of Bollerslev (1990).

Suggested Citation

  • Christian Hafner & Philip Hans Franses, 2009. "A Generalized Dynamic Conditional Correlation Model: Simulation and Application to Many Assets," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 612-631.
  • Handle: RePEc:taf:emetrv:v:28:y:2009:i:6:p:612-631 DOI: 10.1080/07474930903038834
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930903038834
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McAleer, Michael & Chan, Felix & Marinova, Dora, 2007. "An econometric analysis of asymmetric volatility: Theory and application to patents," Journal of Econometrics, Elsevier, vol. 139(2), pages 259-284, August.
    2. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    3. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
    4. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2002. "Consistent Testing for Stochastic Dominance: A Subsampling Approach," STICERD - Econometrics Paper Series 433, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    5. Michael J. Fleming, 2003. "Measuring treasury market liquidity," Economic Policy Review, Federal Reserve Bank of New York, issue Sep, pages 83-108.
    6. Michael J. Fleming, 2000. "The benchmark U.S. Treasury market: recent performance and possible alternatives," Economic Policy Review, Federal Reserve Bank of New York, issue Apr, pages 129-145.
    7. John M. Maheu & Thomas H. McCurdy, 2002. "Nonlinear Features of Realized FX Volatility," The Review of Economics and Statistics, MIT Press, pages 668-681.
    8. Maheu, John M. & McCurdy, Thomas H., 2000. "Volatility dynamics under duration-dependent mixing," Journal of Empirical Finance, Elsevier, pages 345-372.
    9. Shiqing Ling & Michael McAleer, 2001. "Necessary and Sufficient Moment Conditions for the GARCH(r,s) and Asymmetric Power GARCH(r,s) Models," ISER Discussion Paper 0534, Institute of Social and Economic Research, Osaka University.
    10. Pierluigi Balduzzi & Sanjiv Ranjan Das & Silverio Foresi, 1998. "The Central Tendency: A Second Factor In Bond Yields," The Review of Economics and Statistics, MIT Press, pages 62-72.
    11. Peter F. Christoffersen & Francis X. Diebold, 1997. "How Relevant is Volatility Forecasting for Financial Risk Management?," Center for Financial Institutions Working Papers 97-45, Wharton School Center for Financial Institutions, University of Pennsylvania.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, pages 307-327.
    13. Thomakos, Dimitrios D. & Wang, Tao, 2003. "Realized volatility in the futures markets," Journal of Empirical Finance, Elsevier, pages 321-353.
    14. Wayne E. Ferson & Sergei Sarkissian & Timothy T. Simin, 2003. "Spurious Regressions in Financial Economics?," Journal of Finance, American Finance Association, vol. 58(4), pages 1393-1414, August.
    15. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
    16. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    17. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 70-86, February.
    18. Gregory R. Duffee, 1998. "The Relation Between Treasury Yields and Corporate Bond Yield Spreads," Journal of Finance, American Finance Association, vol. 53(6), pages 2225-2241, December.
    19. Jonathan H. Wright & Tim Bollerslev, 1999. "High frequency data, frequency domain inference and volatility forecasting," International Finance Discussion Papers 649, Board of Governors of the Federal Reserve System (U.S.).
    20. Jeff Fleming, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    21. Fumio Ohtake & Jun Tomioka, 2004. "Who Supports Redistribution?," The Japanese Economic Review, Japanese Economic Association, pages 333-354.
    22. Peter F. Christoffersen & Francis X. Diebold, 2000. "How Relevant is Volatility Forecasting for Financial Risk Management?," The Review of Economics and Statistics, MIT Press, pages 12-22.
    23. Steven A. Sharpe, 2002. "Reexamining Stock Valuation and Inflation: The Implications Of Analysts' Earnings Forecasts," The Review of Economics and Statistics, MIT Press, pages 632-648.
    24. Steven A. Sharpe, 2002. "Reexamining Stock Valuation and Inflation: The Implications Of Analysts' Earnings Forecasts," The Review of Economics and Statistics, MIT Press, pages 632-648.
    25. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters,in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665 National Bureau of Economic Research, Inc.
    26. Garry J. Schinasi & T. Todd Smith & Charles Frederick Kramer, 2001. "Financial Implications of the Shrinking Supply of U.S. Treasury Securities," IMF Working Papers 01/61, International Monetary Fund.
    27. Kent Daniel & David Hirshleifer & Avanidhar Subrahmanyam, 1998. "Investor Psychology and Security Market Under- and Overreactions," Journal of Finance, American Finance Association, vol. 53(6), pages 1839-1885, December.
    28. Jaime de Melo & David Tarr, 2015. "Welfare Costs Of U.S. Quotas In Textiles, Steel And Autos," World Scientific Book Chapters,in: Modeling Developing Countries' Policies in General Equilibrium, chapter 21, pages 451-459 World Scientific Publishing Co. Pte. Ltd..
    29. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, pages 505-531.
    30. Maureen O'Hara, 2003. "Presidential Address: Liquidity and Price Discovery," Journal of Finance, American Finance Association, vol. 58(4), pages 1335-1354, August.
    31. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
    32. Maheu, John M. & McCurdy, Thomas H., 2000. "Volatility dynamics under duration-dependent mixing," Journal of Empirical Finance, Elsevier, pages 345-372.
    33. Ling, Shiqing & McAleer, Michael, 2002. "NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS," Econometric Theory, Cambridge University Press, vol. 18(03), pages 722-729, June.
    34. Harrison Hong & Jeffrey D. Kubik, 2003. "Analyzing the Analysts: Career Concerns and Biased Earnings Forecasts," Journal of Finance, American Finance Association, vol. 58(1), pages 313-351, February.
    35. Ling, Shiqing & McAleer, Michael, 2002. "Stationarity and the existence of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 109-117, January.
    36. Tim Bollerslev & Jonathan H. Wright, 2001. "High-Frequency Data, Frequency Domain Inference, And Volatility Forecasting," The Review of Economics and Statistics, MIT Press, pages 596-602.
    37. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:28:y:2009:i:6:p:612-631. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.