IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Asymptotically Optimal Smoothing with ARCH Models

  • Daniel B. Nelson
Registered author(s):

    Suppose an observed time series is generated by a stochastic volatility model-i.e., there is an unobservable state variable controlling the volatility of the innovations in the series. As shown by Nelson (1992), and Nelson and Foster (1994), a misspecified ARCH model will often be able to consistently (as a continuous time limit is approached) estimate the unobserved volatility process, using information in the lagged residuals. This paper shows how to more efficiently estimate such a volatility process using information in both lagged and led residuals. In particular, this paper expands the optimal filtering results of Nelson and Foster (1994) and Nelson (1994) to smoothing.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.nber.org/papers/t0161.pdf
    Download Restriction: no

    Paper provided by National Bureau of Economic Research, Inc in its series NBER Technical Working Papers with number 0161.

    as
    in new window

    Length:
    Date of creation: Aug 1994
    Date of revision:
    Publication status: published as Nelson, Daniel B. "Asymptotically Optimal Smoothing With ARCH Models," Econometrica, 1996, v64(3,May), 561-573.
    Handle: RePEc:nbr:nberte:0161
    Note: AP
    Contact details of provider: Postal: National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.
    Phone: 617-868-3900
    Web page: http://www.nber.org
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Eric Ghysels & Andrew Harvey & Éric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
    2. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    3. Ruiz, Esther, 1994. "Quasi-maximum likelihood estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 63(1), pages 289-306, July.
    4. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    5. Daniel B. Nelson, 1994. "Asymptotic Filtering Theory for Multivariate ARCH Models," NBER Technical Working Papers 0162, National Bureau of Economic Research, Inc.
    6. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(04), pages 419-438, December.
    7. Foster, Dean P & Nelson, Daniel B, 1996. "Continuous Record Asymptotics for Rolling Sample Variance Estimators," Econometrica, Econometric Society, vol. 64(1), pages 139-74, January.
    8. Daniel B. Nelson & Dean P. Foster, 1994. "Asypmtotic Filtering Theory for Univariate Arch Models," NBER Technical Working Papers 0129, National Bureau of Economic Research, Inc.
    9. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    10. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    11. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0161. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.