IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Gaussian kernel GARCH models

  • Xibin Zhang


  • Maxwell L. King


This paper aims to investigate a Bayesian sampling approach to parameter estimation in the GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This mixture density has the form of a kernel density estimator of the errors with its bandwidth being the standard deviation. This study is motivated by the lack of robustness in GARCH models with a parametric assumption for the error density when used for error-density based inference such as value-at-risk (VaR) estimation. A contribution of the paper is to construct the likelihood and posterior of the model and bandwidth parameters under the kernel-form error density, and to derive the one-step-ahead posterior predictive density of asset returns. We also investigate the use and benefit of localized bandwidths in the kernel-form error density. A Monte Carlo simulation study reveals that the robustness of the kernel-form error density compensates for the loss of accuracy when using this density. Applying this GARCH model to daily return series of 42 assets in stock, commodity and currency markets, we find that this GARCH model is favored against the GARCH model with a skewed Student t error density for all stock indices, two out of 11 currencies and nearly half of the commodities. This provides an empirical justification for the value of the proposed GARCH model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 19/13.

in new window

Date of creation: 2013
Date of revision:
Handle: RePEc:msh:ebswps:2013-19
Contact details of provider: Postal: PO Box 11E, Monash University, Victoria 3800, Australia
Phone: +61 3 99052489
Fax: +61 3 99055474
Web page:

More information through EDIRC

Order Information: Web: Email:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Kim, Sangjoon & Shephard, Neil & Chib, Siddhartha, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Wiley Blackwell, vol. 65(3), pages 361-93, July.
  2. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(01), pages 107-131, April.
  3. Kanti V. Mardia & John T. Kent & Gareth Hughes & Charles C. Taylor, 2009. "Maximum likelihood estimation using composite likelihoods for closed exponential families," Biometrika, Biometrika Trust, vol. 96(4), pages 975-982.
  4. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
  5. Jianing Di & Ashis Gangopadhyay, 2011. "On the efficiency of a semi‐parametric GARCH model," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 257-277, 07.
  6. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  7. Oliver Linton, 1993. "Adaptive Estimation in ARCH Models," Cowles Foundation Discussion Papers 1054, Cowles Foundation for Research in Economics, Yale University.
  8. Concepción Ausín & Pedro Galeano & Pulak Ghosh, 2010. "A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation," Statistics and Econometrics Working Papers ws103822, Universidad Carlos III, Departamento de Estadística y Econometría.
  9. Nakatsuma, Teruo, 2000. "Bayesian analysis of ARMA-GARCH models: A Markov chain sampling approach," Journal of Econometrics, Elsevier, vol. 95(1), pages 57-69, March.
  10. Bauwens, L. & Lubrano, M., 1996. "Bayesian Inference on GARCH Models Using the Gibbs Sampler," G.R.E.Q.A.M. 96a21, Universite Aix-Marseille III.
  11. Xibin Zhang & Maxwell L. King, 2004. "Box-Cox Stochastic Volatility Models with Heavy-Tails and Correlated Errors," Monash Econometrics and Business Statistics Working Papers 26/04, Monash University, Department of Econometrics and Business Statistics.
  12. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-59, October.
  13. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  14. Carlo Grillenzoni, 2009. "Kernel Likelihood Inference for Time Series," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 127-140.
  15. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-30, August.
  16. Singleton, J. Clay & Wingender, John, 1986. "Skewness Persistence in Common Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(03), pages 335-341, September.
  17. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
  18. Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
  19. Drost, F.C. & Klaassen, C.A.J., 1996. "Efficient Estimation in Semiparametric GARCH Models," Discussion Paper 1996-38, Tilburg University, Center for Economic Research.
  20. Vrontos, I D & Dellaportas, P & Politis, D N, 2000. "Full Bayesian Inference for GARCH and EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 187-98, April.
  21. Badrinath, S G & Chatterjee, Sangit, 1988. "On Measuring Skewness and Elongation in Common Stock Return Distributions: The Case of the Market Index," The Journal of Business, University of Chicago Press, vol. 61(4), pages 451-72, October.
  22. Koop, Gary, 1994. "Bayesian Semi-nonparametric ARCH Models," The Review of Economics and Statistics, MIT Press, vol. 76(1), pages 176-81, February.
  23. Ao Yuan & Jan G. De Gooijer, 2007. "Semiparametric Regression with Kernel Error Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 841-869.
  24. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2013-19. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.